58 resultados para exercises biomechanics
em University of Queensland eSpace - Australia
Resumo:
Nerve and tendon gliding exercises are advocated in the conservative and postoperative management of carpal tunnel syndrome (CTS). However, traditionally advocated exercises elongate the nerve bedding substantially, which may induce a potentially deleterious strain in the median nerve with the risk of symptom exacerbation in some patients and reduced benefits from nerve gliding. This study aimed to evaluate various nerve gliding exercises, including novel techniques that aim to slide the nerve through the carpal tunnel while minimizing strain (sliding techniques). With these sliding techniques, it is assumed that an increase in nerve strain due to nerve bed elongation at one joint (e.g., wrist extension) is simultaneously counterbalanced by a decrease in nerve bed length at an adjacent joint (e.g., elbow flexion). Excursion and strain in the median nerve at the wrist were measured with a digital calliper and miniature strain gauge in six human cadavers during six mobilization techniques. The sliding technique resulted in an excursion of 12.4 mm, which was 30% larger than any other technique (p 0.0002). Strain also differed between techniques (p 0.00001), with minimal peak values for the sliding technique. Nerve gliding associated with wrist movements can be considerably increased and nerve strain substantially reduced by simultaneously moving neighboring joints. These novel nerve sliding techniques are biologically plausible exercises for CTS that deserve further clinical evaluation. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:972-980, 2007
Resumo:
Study Design. A randomized clinical trial with 1-year and 3-year telephone questionnaire follow-ups. Objective. To report a specific exercise intervention’s long-term effects on recurrence rates in acute, first-episode low back pain patients. Summary of Background Data. The pain and disability associated with an initial episode of acute low back pain (LBP) is known to resolve spontaneously in the short-term in the majority of cases. However, the recurrence rate is high, and recurrent disabling episodes remain one of the most costly problems in LBP. A deficit in the multifidus muscle has been identified in acute LBP patients, and does not resolve spontaneously on resolution of painful symptoms and resumption of normal activity. Any relation between this deficit and recurrence rate was investigated in the long-term. Methods. Thirty-nine patients with acute, first-episode LBP were medically managed and randomly allocated to either a control group or specific exercise group. Medical management included advice and use of medications. Intervention consisted of exercises aimed at rehabilitating the multifidus in cocontraction with the transversus abdominis muscle. One year and three years after treatment, telephone questionnaires were conducted with patients. Results. Questionnaire results revealed that patients from the specific exercise group experienced fewer recurrences of LBP than patients from the control group. One year after treatment, specific exercise group recurrence was 30%, and control group recurrence was 84% (P , 0.001). Two to three years after treatment, specific exercise group recurrence was 35%, and control group recurrence was 75% (P , 0.01). Conclusion. Long-term results suggest that specific exercise therapy in addition to medical management and resumption of normal activity may be more effective in reducing low back pain recurrences than medical management and normal activity alone. [Key Words: multifidus, low back pain, rehabilitation]
Resumo:
Perineal ultrasound was used to detect and quantify levator activity by measuring the displacement of the internal urethral meatus against the inferoposterior margin of the symphysis pubis, Women who had previously been instructed in pelvic floor muscle exercises were more likely to contract the levator muscle when asked to do so than were those without previous instruction (P
Resumo:
The response of the abdominal muscles to voluntary contraction of the pelvic floor (PF) muscles was investigated in women with no history of symptoms of stress urinary incontinence to determine whether there is co-activation of the muscles surrounding the abdominal cavity during exercises for the PF muscles. Electromyographic (EMG) activity of each of the abdominal muscles was recorded with fine-wire electrodes in seven parous females. Subjects contracted the PF muscles maximally in three lumbar spine positions while lying supine. In all subjects. the EMG activity of the abdominal muscles was increased above the baseline level during contractions of the PF muscles in at least one of the spinal positions. The amplitude of the increase in EMG activity of obliquus externus abdominis was greatest when the spine was positioned in flexion and the increase in activity of transversus abdominis was greater than that of rectus abdominis and obliquus externus abdominis when the spine was positioned in extension. In an additional pilot experiment. EMG recordings were made from the pubococcygeus and the abdominal muscles with fine-wire electrodes in two subjects during the performance of three different sub-maximal isometric abdominal muscle maneuvers. Both subjects showed an increase in EMG activity of the pubococcygeus with each abdominal muscle contraction. The results of these experiments indicate that abdominal muscle activity is a normal response to PF exercise in subjects with no symptoms of PF muscle dysfunction and provide preliminary evidence that specific abdominal exercises activate the PF muscles. Neurourol. Urodynam. 20:31-42, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The aim of this study was to determine the effects of 7 weeks of high- and low-velocity resistance training on strength and sprint running performance in nine male elite junior sprint runners (age 19.0 +/- 1.4 years, best 100 m times 10.89 +/- 0.21 s; mean +/- s). The athletes continued their sprint training throughout the study, but their resistance training programme was replaced by one in which the movement velocities of hip extension and flexion, knee extension and flexion and squat exercises varied according to the loads lifted (i.e. 30-50% and 70-90% of 1-RM in the high- and low-velocity training groups, respectively). There were no between-group differences in hip flexion or extension torque produced at 1.05, 4.74 or 8.42 rad . s(-1), 20 m acceleration or 20 m 'flying' running times, or 1-RM squat lift strength either before or after training. This was despite significant improvements in 20 m acceleration time (P < 0.01), squat strength (P< 0.05), isokinetic hip flexion torque at 4.74 rad . s(-1) and hip extension torque at 1.05 and 4.74 rad . s(-1) for the athletes as a whole over the training period. Although velocity-specific strength adaptations have been shown to occur rapidly in untrained and non-concurrently training individuals, the present results suggest a lack of velocity-specific performance changes in elite concurrently training sprint runners performing a combination of traditional and semi-specific resistance training exercises.
Resumo:
Objectives. To assess the efficacy of a prolotherapy injection and exercise protocol in the treatment of chronic nonspecific low back pain. Design. Randomized controlled trial with two- by- two factorial design, triple- blinded for injection status, and single- blinded for exercise status. Setting. General practice. Participants. One hundred ten participants with nonspecific low- back pain of average 14 years duration were randomized to have repeated prolotherapy ( 20% glucose/ 0.2% lignocaine) or normal saline injections into tender lumbo- pelvic ligaments and randomized to perform either flexion/ extension exercises or normal activity over 6 months. Main outcome measures: Pain intensity ( VAS) and disability scores ( Roland- Morris) at 2.5, 4, 6, 12, and 24 months. Results. Follow- up was achieved in 96% at 12 months and 80% at 2 years. Ligament injections, with exercises and with normal activity, resulted in significant and sustained reductions in pain and disability throughout the trial, but no attributable effect was found for prolotherapy injections over saline injections or for exercises over normal activity. At 12 months, the proportions achieving more than 50% reduction in pain from baseline by injection group were glucose- lignocaine: 0.46 versus saline: 0.36. By activity group these proportions were exercise: 0.41 versus normal activity: 0.39. Corresponding proportions for > 50% reduction in disability were glucose- lignocaine: 0.42 versus saline 0.36 and exercise: 0.36 versus normal activity: 0.38. There were no between group differences in any of the above measures. Conclusions. In chronic nonspecific low- back pain, significant and sustained reductions in pain and disability occur with ligament injections, irrespective of the solution injected or the concurrent use of exercises.
Resumo:
Various exercises are used to retrain the abdominal muscles in the management of low back pain and other musculoskeletal disorders. However. few studies have directly investigated the activity of all the abdominal muscles or the recruitment of regions of the abdominal muscles during these manoeuvres. This study examined the activity of different regions of transversus abdominis (TrA), obliquus internus (OI) and externus abdominis (OE), and rectus abdominis (RA), and movement of lumbar spine, pelvis and abdomen during inward movement of the lower abdominal wall, abdominal bracing, pelvic tilting, and inward movement of the lower and upper abdominal wall. Inward movement of the lower abdominal wall in supine produced greater activity of TrA compared to OI. OE and RA. During posterior pelvic tilting. middle OI was most active and with abdominal bracing. OE was predominately recruited. Regions of TrA were recruited differentially and in inverse relationship between lumbopelvic motion and TrA electromyography (EMG) was found. This study indicates that inward movement of the abdominal wall in supine produces the most independent activity of TrA relative to the other abdominal muscle, recruitment varies between regions of TrA, and observation of abdominal and lumbopelvic motion may assist in evalation of exercise performance. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The objective was to describe the relationship between epidemiological and biomechanical factors in the causal pathway of inflatable rescue boat (IRB)-related injuries in Australian surf lifesavers; to develop epidemiological and biomechanical methodologies and measurement instruments that identify and measure the risk factors, for use in future epidemiological studies. Epidemiological and biomechanical models of injury causation were combined. Host, agent and environmental factors that influenced total available force for transfer to host were specified. Measurement instruments for each of the specified risk factors were developed. Instruments were piloted in a volunteer sample of surf lifesavers. Participant characteristics were recorded using demographic questionnaires; IRB operating techniques were recorded using a custom-made on-board camera (Grand RF-Guard) and images of operating techniques were coded by two independent observers. Ground reaction forces transmitted to the host through the lifesaver's feet at the time of wave impact were measured using a custom-built piezoelectric force platform. The demographic questionnaire was found practical; the on-board camera functioned successfully within the target environment. Agreement between independent coders of IRB operating technique images was significant (p < 0.001) with Kappa values ranging from 0.5 to 0.7. Biomechanical instruments performed successfully in the target environment. Peak biomechanical forces were 415.6N (left foot) and 252.9N (right foot). This study defines the relationship between epidemiological and biomechanical factors in modifying the risk of IRB-related injury in a population of surf lifesavers. Preliminary feasibility of combining epidemiological and biomechanical information has been demonstrated. Further testing of the proposed model and measurement instruments is required.
Resumo:
Study Design. Biomechanical study of unembalmed human lumbar segments. Objective. To investigate the effects of tensioning the lumbar fasciae ( transversus abdominis [TrA]) aponeurosis) on segment stiffness during flexion and extension. Summary of Background Data. Animal and human studies suggest that TrA may influence intersegmental movement via tension in the middle and posterior layers of lumbar fasciae ( MLF, PLF). Methods. Compressive flexion and extension moments were applied to 17 lumbar segments from 9 unembalmed cadavers with 20 N lateral tension of the TrA aponeurosis during: 1) static tests: load was compared when fascial tension was applied during static compressive loads into flexion-extension; 2) cyclic loading tests: load, axial displacement, and stiffness were compared during repeated compressive loading cycles into flexion-extension. After testing, the PLF was incised to determine the tension transmitted by each layer. Results. At all segments and loads (< 200 N), fascial tension increased resistance to flexion loads by similar to 9.5 N. In 15 of 17, fascial tension decreased resistance to extension by similar to 6.6 N. Fascial tension during cyclic flexion loading decreased axial displacement by 26% at the onset of loading (0 - 2 N) and 2% at 450 N ( 13 of 17). During extension loading, fascial tension increased displacement at the onset of loading ( 10 of 17) by similar to 23% and slightly (1%) decreased displacement at 450 N. Segment stiffness was increased by 6 N/mm in flexion (44% at 25 N) and decreased by 2 N/mm (8% at 25 N) in extension. More than 85% of tension was transmitted through the MLF. Conclusions. Tension on the lumbar fasciae simulating moderate contraction of TrA affects segmental stiffness, particularly toward the neutral zone.