33 resultados para exercise-induced mitochondrial adaptation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc: as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and heat stroke. When endotoxaemia can be tolerated or prevented, continuing exercise and heat exposure will elevate Tc to a higher level (> 42 degrees C), where heat stroke may occur through the direct thermal effects of heat on organ tissues and cells. We also discuss the evidence suggesting that heat stroke may occur through endotoxaemia (heat sepsis), the primary pathway of heat stroke, or hyperthermia, the secondary pathway of heat stroke. The existence of these two pathways of heat stroke and the contribution of exercise-induced immune and GI disturbances in the primary pathway of heat stroke are illustrated in the dual pathway model of heat stroke. This model of heat stroke suggests that prolonged intense exercise suppresses anti-LPS mechanisms, and promotes inflammatory and pyrogenic activities in the pathway of heat stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regular aerobic exercise is recommended by physicians to improve health and longevity. However, individuals exercising in urban regions are often in contact with air pollution, which includes particles and gases associated with respiratory disease and cancer. We describe the recent evidence on the cardiovascular effects of air pollution, and the implications of exercising in polluted environments, with a view to informing clinicians and other health professionals. There is now strong evidence that fine and ultra fine particulate matter present in air pollution increases cardiovascular morbidity and mortality. The main mechanisms of disease appear to be related to an increase in the pathogenic processes associated with atherosclerosis. People exercising in environments pervaded by air contaminants are probably at increased risk, due to an exercise-induced amplification in respiratory uptake, lung deposition and toxicity of inhaled pollutants. We make evidence-based recommendations for minimizing exposure to air-borne toxins while exercising, and suggest that this advice be passed on to patients where appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Diastolic heart failure (DHF) is characterized by dyspnea due to increased left ventricular (LV) filling pressures during stress. We sought the relationship of exercise-induced increases in B-type natriuretic peptide (BNP) to LV filling pressures and parameters of cardiovascular performance in suspected DHF. Methods Twenty-six treated hypertensive patients with suspected DHF (exertional dyspnea, LV ejection fraction >50%, and diastolic dysfunction) underwent maximal exercise echocardiography using the Bruce protocol. BNP, transmitral Doppler, and tissue Doppler for systolic (So) and early (Ea) and late (Aa) diastolic mitral annular velocities were obtained at rest and peak stress. LV filling pressures were estimated with E/Ea ratios. Results Resting BNP correlated with resting pulse pressure (r=0.45, P=0.02). Maximal exercise performance (4.6 +/- 2.5min) was limited by dyspnea. Blood pressure increased with exercise (from 143 +/- 19/88 +/- 8 to 191 +/- 22/90 +/- 10 mm Hg); 13 patients (50%) had a hypertensive response. Peak exercise BNP correlated with peak transmitral E velocity (r = 0.41, P <.05) and peak heart rate (r = -0.40, P <.05). BNP increased with exercise (from 48 57 to 74 97 pg/mL, P =.007), and the increment of BNP with exercise was associated with maximal workload and peak exercise So, Ea, and Aa (P <.01 for all). Filling pressures, approximated by lateral E/Ea ratio, increased with exercise (7.7 +/- 2.0 to 10.0 +/- 4.8, P <.01). BNP was higher in patients with possibly elevated filling pressures at peak exercise (E/Ea >10) compared to those with normal pressures (123 +/- 124 vs 45 +/- 71 pg/mL, P =.027). Conclusions Augmentation of BNP with exercise in hypertensive patients with suspected DHF is associated with better exercise capacity, LV systolic and diastolic function, and left atrial function. Peak exercise BNP levels may identify exercise-induced elevation of filling pressures in DHF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: ( 1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running ( - 10% gradient) at 60% VO2 max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E-2, leukotriene B-4 and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P< 0.05) after all three trials. Plasma prostaglandin E-2 concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B4 did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher ( P< 0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least 30 minutes of moderate-intensity physical activity accumulated on most, preferably all days is considered the minimum level necessary to reduce the risk of developing cardiovascular disease. Despite an unclear explanation, some epidemiological data paradoxically suggest that a very high volume of exercise is associated with a decrease in cardiovascular health. Although ultra-endurance exercise training has been shown to increase antioxidant defences (and therefore confer a protective effect against oxidative stress), an increase in oxidative stress may contribute to the development of atherosclerosis via oxidative modification of low-density lipoprotein (LDL). Research has also shown that ultra-endurance exercise is associated with acute cardiac dysfunction and injury, and these may also be related to an increase in free radical production. Longitudinal studies are needed to assess whether antioxidant defences are adequate to prevent LDL oxidation that may occur as a result of increased free radical production during very high volumes of exercise. In addition, this work will assist in understanding the accrued effect of repeated ultra-endurance exercise-induced myocardial damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation, (alpha-lipoic acid and a-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were. assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also bad no effect (p > 0.05). GPX (125.9 2.8 vs. 121.5 3.0 U.gHb(-1), p < 0.05) and CAT (6.1 0.2 vs. 5.6 0.2 U.mgHb-1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 4.3 vs. 52.0 5.2 U.mgHb(-1), p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tennis played at an elite level requires intensive training characterized by repeated bouts of brief intermittent high intensity exercise over relatively long periods of time (1 - 3 h or more). Competition can place additional stress on players. The purpose of this study was to investigate the temporal association between specific components of tennis training and competition, the incidence of upper respiratory tract infections (URT1), and salivary IgA, in a cohort of seventeen elite female tennis players. Timed, whole unstimulated saliva samples were collected before and after selected 1-h training sessions at 2 weekly intervals, over 12 weeks. Salivary IgA concentration was measured by ELISA and IgA secretion rate calculated (mug IgA x ml(-1) x ml saliva x min(-1)). Players reported URTI symptoms and recorded training and competition in daily logs. Data analysis showed that higher incidence of URTI was significantly associated with increased training duration and load, and competition level, on a weekly basis. Salivary IgA secretion rate (S-IgA) dropped significantly after 1 hour of tennis play. Over the 12-week period, pre-exercise salivary IgA concentration and secretion rate were directly associated with the amount of training undertaken during the previous day and week (p < 0.05). However, the decline in S-IgA after 1 h of intense tennis play was also positively related to the duration and load of training undertaken during the previous day and week (p < 0.05). Although exercise-induced suppression of salivary IgA may be a risk factor, it could not accurately predict the occurrence of URTI in this cohort of athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The prevalence of left ventricular hypertrophy (LVH), coronary artery disease, and subclinical cardiomyopathy in diabetic patients without known cardiac disease is unclear. We sought the frequency of these findings to determine whether plasma brain natriuretic peptide (BNP) could be used as an alternative screening tool to identify subclinical LV dysfunction. Methods Asymptomatic patients with diabetes mellitus without known cardiac disease (n = 10 1) underwent clinical evaluation, measurement of BNP, exercise stress testing, and detailed echocardiographic assessment. After exclusion of overt dysfunction or ischemia, subclinical myocardial function was sought on the basis of myocardial systolic (Sm) and diastolic velocity (Em). Association was. sought between subclinical dysfunction and clinical, biochemical, exercise, and echocardiographic variables. Results Of 101 patients, 22 had LVH and 16 had ischemia evidenced by exercise-induced wall motion abnormalities. Only 4 patients had abnormal BNP levels; BNP was significantly increased in patients with LVH. After exclusion of LVH and coronary artery disease, subclinical cardiomyopathy was identified in 24 of 66 patients: Subclinical disease could not be predicted by BNP. Conclusions Even after exclusion of asymptomatic ischemia and hypertrophy, subclinical systolic and diastolic dysfunction occurs in a significant number of patients with type 2 diabetes. However, screening approaches, including BNP, do not appear to be sufficiently sensitive to identify subclinical dysfunction, which requires sophisticated echocardiographic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rev-erbbeta is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-alpha (RORalpha). RORalpha has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Rev-erbbeta and RORalpha are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbbeta has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbbeta regulates lipid metabolism in skeletal muscle. This lean tissue accounts for > 30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbbeta in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbbeta decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (> 15-fold) in mRNA expression of interleukin-6, an exercise-induced myokine that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (> 20- fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbbeta in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbbeta may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review discusses studies investigating the effects of antioxidant supplementation on exercise-induced oxidative stress with a focus on the health implications. The aim is to determine antioxidant requirements for endurance athletes. Overall, differences in methodology make it difficult to compare the relatively small number of published studies on this topic. The types of studies needed to more adequately assess the health effects of antioxidant supplements in athletes (long-term interventions with hard end points) have not been done. Therefore, there is currently insufficient evidence to recommend antioxidant supplements for endurance athletes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 ( n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 +/- 0.32 to 7.90 +/- 0.17 mm), systolic volume (49 +/- 7 to 83 +/- 11 mul) and cardiac output (75 +/- 3 to 107 +/- 8 ml/min) but not left wall thickness in diastole (1.74 +/- 0.07 to 1.80 +/- 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 +/- 1.1 to 19.1 +/- 0.3) and reduced purine efflux during pacing-induced workload increases. P-31-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function.