2 resultados para evolutionary hill climbing

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combinatorial chemistry has become an invaluable tool in medicinal chemistry for the identification of new drug leads. For example, libraries of predetermined sequences and head-to-tail cyclized peptides are routinely synthesized in our laboratory using the IRORI approach. Such libraries are used as molecular toolkits that enable the development of pharmacophores that define activity and specificity at receptor targets. These libraries can be quite large and difficult to handle, due to physical and chemical constraints imposed by their size. Therefore, smaller sub-libraries are often targeted for synthesis. The number of coupling reactions required can be greatly reduced if the peptides having common amino acids are grouped into the same sub-library (batching). This paper describes a schedule optimizer to minimize the number of coupling reactions by rotating and aligning sequences while simultaneously batching. The gradient descent method thereby reduces the number of coupling reactions required for synthesizing cyclic peptide libraries. We show that the algorithm results in a 75% reduction in the number of coupling reactions for a typical cyclic peptide library.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boolean models of genetic regulatory networks (GRNs) have been shown to exhibit many of the characteristic dynamics of real GRNs, with gene expression patterns settling to point attractors or limit cycles, or displaying chaotic behaviour, depending upon the connectivity of the network and the relative proportions of excitatory and inhibitory interactions. This range of behaviours is only apparent, however, when the nodes of the GRN are updated synchronously, a biologically implausible state of affairs. In this paper we demonstrate that evolution can produce GRNs with interesting dynamics under an asynchronous update scheme. We use an Artificial Genome to generate networks which exhibit limit cycle dynamics when updated synchronously, but collapse to a point attractor when updated asynchronously. Using a hill climbing algorithm the networks are then evolved using a fitness function which rewards patterns of gene expression which revisit as many previously seen states as possible. The final networks exhibit “fuzzy limit cycle” dynamics when updated asynchronously.