7 resultados para eusocial insects

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many models have been advanced to suggest how different expressions of sociality have evolved and are maintained. However these models ignore the function of groups for the particular species in question. Here we present a new perspective on sociality where the function of the group takes a central role. We argue that sociality may have primarily a reproductive, protective, or foraging function, depending on whether it enhances the reproductive, protective or foraging aspect of the animal's life (sociality may serve a mixture of these functions). Different functions can potentially cause the development of the same social behaviour. By identifying which function influences a particular social behaviour we can determine how that social behaviour will change with changing conditions, and which models are most pertinent. To test our approach we examined spider sociality, which has often been seen as the poor cousin to insect sociality. By using our approach we found that the group characteristics of eusocial insects is largely governed by the reproductive function of their groups, while the group characteristics of social spiders is largely governed by the foraging function of the group. This means that models relevant to insects may not be relevant to spiders. It also explains why eusocial insects have developed a strict caste system while spider societies are more egalitarian. We also used our approach to explain the differences between different types of spider groups. For example, differences in the characteristics of colonial and kleptoparasitic groups can be explained by differences in foraging methods, while differences between colonial and cooperative spiders can be explained by the role of the reproductive function in the formation of cooperative spider groups. Although the interactions within cooperative spider colonies are largely those of a foraging society, demographic traits and colony dynamics are strongly influenced by the reproductive function. We argue that functional explanations help to understand the social structure of spider groups and therefore the evolutionary potential for speciation in social spiders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Australian and zone harbours a surprising number of parthenogenetic organisms. including the well known case of the grasshopper Warramaba virgo. Less well known is the case of the stick insects of the Sipyloidea complex, which. despite its presence in the literature for over 15 years. has gone entirely unnoticed by workers in the field. We draw attention to the remarkable similarities between the evolution of parthenogenesis in Warramaba and Sipyloidea and analyse the geographic distributions of parthenogenetic and sexual forms with respect to six Climatic variables. We provide evidence that a combination of Climatic and vegetative barriers are responsible for the current distribution patterns in these taxa. Comparisons are also made with patterns of geographic parthenogenesis in lizards of the Heteronotia binoei complex. In general. there has been a strong tendency for parthenogenesis to originate via hybridization in the western part of the and zone with subsequent eastward spread throughout mulga woodlands and mallee shrublands where rainfall is both low and aseasonal. We propose that the hybridization events leading to parthenogenesis in these diverse taxa were driven by a common biogeographic process - that is, by range shifts associated with changes in aridity during the late Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most multimeric lectins are adhesion molecules, promoting attachment and spreading on surface glycodeterminants. In addition, some lectins have counter-adhesion properties, detaching already spread cells which then acquire round or spindle-formed cell shapes. Since lectin-mediated adhesion and detachment is observed in haemocyte-like Drosophila cells, which have haemomucin as the major lectin-binding glycoprotein, the two opposite cell behaviours may be the result of lectin-mediated receptor rearrangements on the cell surface. To investigate oligomeric lectins as a possible extracellular driving force affecting cell shape changes, we examined lectin-mediated reactions in lepidopteran haemocytes after cytochalasin D-treatment and observed that while cell-spreading was dependent on F-actin, lectin-uptake was less dependent on F-actin. We propose a model of cell shape changes involving a dynamic balance between adhesion and uptake reactions. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sibly et at. (Reports, 22 July 2005, p. 607) recently estimated the relationship between population size and growth rate for 1780 time series of various species. I explain why some aspects of their analysis are questionable and, therefore, why their results and estimation procedure should be used with care.