2 resultados para ethylene inhibition
em University of Queensland eSpace - Australia
Resumo:
Corrosion of magnesium engine components by coolant is an important issue in the automotive industry where magnesium alloys may be used. It is of significance to understand the corrosion behaviour of pure magnesium in ethylene glycol solutions, as this can provide a basis for developing new coolants for magnesium alloy engine blocks. In this paper, through corrosion and electrochemical tests, it was found that the corrosion rate of magnesium decreased with increasing concentration of ethylene glycol. Individual contaminants, such as NaCl, NaHCO3, Na2SO4 and NaCl can make aqueous ethylene glycol solution more corrosive to magnesium. However, in NaCl contaminated ethylene glycol, NaHCO3 and Na2SO4 showed some inhibition effect. The solution resistivity played an important role in the corrosion of magnesium in ethylene glycol solutions, and the competitive adsorption of ethylene glycol and the contaminants on the magnesium surface was also responsible for the observed corrosion behaviours. The corrosion of magnesium in ethylene glycol can be effectively inhibited by addition of fluorides that react with magnesium and form a protective film on the surface. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NACTF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor-and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.