25 resultados para equivalent circuits
em University of Queensland eSpace - Australia
Resumo:
Conventional bioimpedance spectrometers measure resistance and reactance over a range of frequencies and, by application of a mathematical model for an equivalent circuit (the Cole model), estimate resistance at zero and infinite frequencies. Fitting of the experimental data to the model is accomplished by iterative, nonlinear curve fitting. An alternative fitting method is described that uses only the magnitude of the measured impedances at four selected frequencies. The two methods showed excellent agreement when compared using data obtained both from measurements of equivalent circuits and of humans. These results suggest that operational equivalence to a technically complex, frequency-scanning, phase-sensitive BIS analyser could be achieved from a simple four-frequency, impedance-only analyser.
Resumo:
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Network building and exchange of information by people within networks is crucial to the innovation process. Contrary to older models, in social networks the flow of information is noncontinuous and nonlinear. There are critical barriers to information flow that operate in a problematic manner. New models and new analytic tools are needed for these systems. This paper introduces the concept of virtual circuits and draws on recent concepts of network modelling and design to introduce a probabilistic switch theory that can be described using matrices. It can be used to model multistep information flow between people within organisational networks, to provide formal definitions of efficient and balanced networks and to describe distortion of information as it passes along human communication channels. The concept of multi-dimensional information space arises naturally from the use of matrices. The theory and the use of serial diagonal matrices have applications to organisational design and to the modelling of other systems. It is hypothesised that opinion leaders or creative individuals are more likely to emerge at information-rich nodes in networks. A mathematical definition of such nodes is developed and it does not invariably correspond with centrality as defined by early work on networks.
Resumo:
What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2(n)). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call Pauli geodesics, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.
Resumo:
Quantum computers hold great promise for solving interesting computational problems, but it remains a challenge to find efficient quantum circuits that can perform these complicated tasks. Here we show that finding optimal quantum circuits is essentially equivalent to finding the shortest path between two points in a certain curved geometry. By recasting the problem of finding quantum circuits as a geometric problem, we open up the possibility of using the mathematical techniques of Riemannian geometry to suggest new quantum algorithms or to prove limitations on the power of quantum computers.
Resumo:
Objective: To compare the incidence of ventilator-associated pneumonia (VAP) in patients ventilated in intensive care by means of circuits humidified with a hygroscopic heat-and-moisture exchanger with a bacterial viral filter (HME) or hot-water humidification with a heater wire in both inspiratory and expiratory circuit limbs (DHW) or the inspiratory limb only (SHW). Design: A prospective, randomized trial. Setting: A metropolitan teaching hospital's general intensive care unit. Patients: Three hundred eighty-one patients requiring a minimum period of mechanical ventilation of 48 hrs. Interventions: Patients were randomized to humidification with use of an HME (n = 190), SHW (n = 94), or DHW (n = 97). Measurements and Main Results. Study end points were VAP diagnosed on the basis of Clinical Pulmonary Infection Score (CPIS) (1), HME resistance after 24 hrs of use, endotracheal tube resistance, and HME use per patient. VAP occurred with similar frequency in all groups (13%, HME; 14%, DHW; 10%, SHW; p = 0.61) and was predicted only by current smoking (adjusted odds ratio [AOR], 2.1; 95% confidence interval [CI], 1.1-3.9; p =.03) and ventilation days (AOR, 1.05; 95% Cl, 1.0-1.2; p =.001); VAP was less likely for patients with an admission diagnosis of pneumonia (AOR, 0.40; 95% Cl, 0.4-0.2; p =.04). HME resistance after 24 hrs of use measured at a gas flow of 50 L/min was 0.9 cm H2O (0.4-2.9). Endotracheal tube resistance was similar for all three groups (16-19 cm H2O min/L; p =.2), as were suction frequency, secretion thickness, and blood on suctioning (p =.32, p =.06, and p =.34, respectively). The HME use per patient per day was 1.13. Conclusions: Humidification technique does not influence either VAP incidence or secretion characteristics, but HMEs may have air-flow resistance higher than manufacturer specifications after 24 hrs of use.
Resumo:
This paper evaluates a low-frequency FDTD method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current (DEMC) is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretizing of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modeling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multilayered spherical phantom model and a complete body model.
Resumo:
The Jameson Cell is a high intensity flotation device, which utilises induced air from the atmosphere. It was developed jointly by Mount Isa Mines and Professor Graeme Jameson of the University of Newcastle in the 1980s. It is proven to generate fine bubbles, in the order of 300 to 500 µm, in a high intensity, high shear and compact zone contained in the downcomer. This aerated mixture exits the downcomer into the pulp zone, which is the quiescent mineral and gangue separation zone. A number of Australian base metal flotation circuits feature a reverse flotation stage at the head of the circuit. Testwork and plant operating data has shown that the use of a Jameson Cell in the prefloat cleaner application has further improved prefloat gangue recovery and selectivity. Operation of a Jameson Cell in a carbonaceous/pyrite prefloat cleaner duty at the Mt Isa copper concentrator increased copper recovery and reduced pyrite in the copper concentrate. Testwork at Zinifex Century Zinc Mine showed a decrease in zinc losses by the utilisation of Jameson Cell prefloat cleaner. Appraisal of a Jameson Cell in a scalping role within the Mt Isa Copper Concentrator indicated significant benefits could be achieved.