160 resultados para environmental risks
em University of Queensland eSpace - Australia
Resumo:
Ross River virus (RRV) is a fascinating, important arbovirus that is endemic and enzootic in Australia and Papua New Guinea and was epidemic in the South Pacific in 1979 and 1980. Infection with RRV may cause disease in humans, typically presenting as peripheral polyarthralgia or arthritis, sometimes with fever and rash. RRV disease notificatïons in Australia average 5,000 per year. The first well-described outbreak occurred in 1928. During World War II there were more outbreaks, and the name epidemic polyarthritis was applied. During a 1956 outbreak, epidemic polyarthritis was linked serologically to a group A arbovirus (Alphavirus). The virus was subsequently isolated from Aedes vigilax mosquitoes in 1963 and then from epidemic polyarthritis patients. We review the literature on the evolutionary biology of RRV, immune response to infection, pathogenesis, serologic diagnosis, disease manifestations, the extraordinary variety of vertebrate hosts, mosquito vectors, and transmission cycles, antibody prevalence, epidemiology of asymptomatic and symptomatic human infection, infection risks, and public health impact. RRV arthritis is due to joint infection, and treatment is currently based on empirical anti-inflammatory regimens. Further research on pathogenesis may improve understanding of the natural history of this disease and lead to new treatment strategies. The burden of morbidity is considerable, and the virus could spread to other countries. To justify and design preventive programs, we need accurate data on economic costs and better understanding of transmission and behavioral and environmental risks.
Resumo:
Behavioral and cognitive interventions for people with psychosis have a long and distinguished history, although the evidence for their application to young people remains limited. We anticipate that the next decades will show substantial research into psychological intervention for this population. Important targets will include the management of environmental stressors, reduction of substance misuse, and promotion of early treatment. Psychological management of positive symptoms, depression, and suicidal behavior will continue to be critical objectives. Important secondary prevention goals will be the retention of cognitive functioning, vocational options, social skills, and social network support, including appropriate family support. We expect primary prevention to include both universal programs and interventions for adolescents at particularly high risk. Technical innovations will include increasing use of Internet-based intervention and behavior cueing devices. Pressures for intervention brevity will continue, as will problems with the systematic delivery of effective procedures.
Resumo:
Risk equations have been developed to assist in determining fitness for work of people with diseases that may cause rapid loss of control. The four equations calculate the frequency of fatal injury to the person with the disease, the frequency of fatal injury to colleagues in the workplace, and the cost of fatal injury and property damage to the employer, it is suggested that the additional risk of fatal injury to the person with the disease should not exceed the fatal injury rate in high-risk industries such as forestry, fishing and mining. it is also suggested that the additional risk of fatal injury to each colleague should be no more than one-tenth of the fatal injury rate due to motor vehicle accidents in the community. Two hypothetical case examples are given, demonstrating the use of the equations. The equations highlight the need to examine the risks associated with individuals, their specific jobs and their workplaces. They also highlight significant uncertainties in the determination of fitness, which perhaps have been underestimated in the past. Wherever possible, redundant defences should be utilized to prevent accidents in the event of sudden incapacity.
Resumo:
The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Two hazard risk assessment matrices for the ranking of occupational health risks are described. The qualitative matrix uses qualitative measures of probability and consequence to determine risk assessment codes for hazard-disease combinations. A walk-through survey of an underground metalliferous mine and concentrator is used to demonstrate how the qualitative matrix can be applied to determine priorities for the control of occupational health hazards. The semi-quantitative matrix uses attributable risk as a quantitative measure of probability and uses qualitative measures of consequence. A practical application of this matrix is the determination of occupational health priorities using existing epidemiological studies. Calculated attributable risks from epidemiological studies of hazard-disease combinations in mining and minerals processing are used as examples. These historic response data do not reflect the risks associated with current exposures. A method using current exposure data, known exposure-response relationships and the semi-quantitative matrix is proposed for more accurate and current risk rankings.
Genetic and environmental contributions to cannabis dependence in a national young adult twin sample
Resumo:
Background. This paper examines genetic and environmental contributions to risk of cannabis dependence. Method. Symptoms of cannabis dependence and measures of social, family and individual risk factors were assessed in a sample of 6265 young adult male and female Australian twins born 1964-1971. Results. Symptoms of cannabis dependence were common: 11(.)0% of sample (15(.)1% of men and 7(.)8% of women) reported two or more symptoms of dependence. Correlates of cannabis dependence included educational attainment, exposure to parental conflict, sexual abuse, major depression, social anxiety and childhood conduct disorder. However, even after control for the effects of these factors, there was evidence of significant genetic effects on risk of cannabis dependence. Standard genetic modelling indicated that 44(.)7% (95% CI = 15-72(.)2) of the variance in liability to cannabis dependence could be accounted for by genetic factors, 20(.)1% (95 CI = 0-43(.)6) could be attributed to shared environment factors and 35(.)3% (95% CI = 26(.)4-45(.)7) could be attributed to non-shared environmental factors. However, while there was no evidence of significant gender differences in the magnitude of genetic and environmental influences, a model which assumed both genetic and shared environmental influences on risks of cannabis dependence among men and shared environmental but no genetic influences among women provided an equally good fit to the data. Conclusions. There was consistent evidence that genetic risk factors are important determinants of risk of cannabis dependence among men. However, it remains uncertain whether there are genetic influences on liability to cannabis dependence among women.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
There exists a major cost issue as regards termite damage to wooden structures. A factor in this cost has been the increasing trend towards slab-on-ground construction. Current literature has been reviewed in relation to concerns about the possible public/environmental health consequences of the repeated use of termiticides in large quantities. The previous, current and projected future use patterns of termiticides are reviewed in the context of techniques appropriate for termite control and treatment priorities. The phasing out of organochlorine termiticides in Australia was undertaken to minimise impact of these substances on the environment and to a lesser extent on public health. These persistent chemicals were replaced by substances with high activity but relatively low persistence in the soil. There has also been an increase in the use of alternative methods (e.g. physical barriers) for the control of termites. The transition away from organochlorine termiticides has led to a realisation that significant information gaps exist with regard to replacement chemicals and other technologies. Although relatively persistent, the organochlorine chemicals have a limited lifespan in soils. Their concentrations are gradually attenuated by processes such as transport away from the point of application and biodegradation. Wooden structures originally treated with these substances will, with the passing of time, be at risk of termite infestation. The only available option is re-treatment with chemicals currently registered for termite control. Thus, there are likely to be substantial future increases associated with the cost of re-treatment and repairs of older slab-on-ground dwellings. More information is required on Australian termite biology, taxonomy and ecology. The risks of termite infestation need to be evaluated, both locally and nationally so that susceptible or high risk areas, structures and building types can be identified and preventive measures taken in terms of design and construction. Building regulations and designs need to be able to reduce or eliminate high-risk housing; and eliminate or reduce conditions that are attractive to termites and/or facilitate termite infestation.
Resumo:
In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.