8 resultados para energy balance
em University of Queensland eSpace - Australia
Resumo:
Objective: The aims of this study were to estimate average yearly weight gain in midage women and to identify the determinants of weight gain and gaining weight at double the average rate. Research Methods and Procedures: The study sample comprised 8071 participants (45 to 55 years old) in the Australian Longitudinal Study on Women's Health who completed mailed surveys in 1996, 1998, and 2001. Results: On average, the women gained almost 0.5 kg per year [average 2.42 kg (95% confidence interval, 2.29 to 2.54) over 5 years]. In multivariate analyses, variables associated with energy balance (physical activity, sitting time, and energy intake), as well as quitting smoking, menopause/hysterectomy, and baseline BMI category were significantly associated with weight gain, but other behavioral and demographic characteristics were not. After adjustment for all of the other biological and behavioral variables, the odds of gaining weight at about twice the average rate (> 5 kg over 5 years) were highest for women who quit smoking (odds ratio = 2.94; 95% confidence interval, 2.17, 3.96). There were also independent relationships between the odds of gaining > 5 kg and lower levels of habitual physical activity, more time spent sitting, energy intake (but only in women with BMI > 25 at baseline), menopause transition, and hysterectomy. Discussion: The average weight gain equates with an energy imbalance of only about 10 kcal or 40 kJ per day, which suggests that small sustained changes in the modifiable behavioral variables could prevent further weight gain.
Resumo:
1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.
Resumo:
Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.
Resumo:
Regulation of food intake and body weight involves a complex balance between long-term control of fat mass involving insulin, adrenal steroids and leptin signals to the CNS and short-term, meal-related signals. Cats will normally limit their food intake to their energy requirements. However, in some instances cats appear unable to regulate energy balance. Our research has demonstrated that despite elevated circulating leptin levels in obese cats associated with increased fat mass, they continue to overeat and gain weight. This paradox of increased leptin concentrations in obesity has been observed in other species and is hypothesized to be a consequence of 'leptin resistance'.
Resumo:
Dizziness and or unsteadiness, associated with episodes of loss of balance, are frequent complaints in those suffering from persistent problems following a whiplash injury. Research has been inconclusive with respect to possible aetiology, discriminative tests and analyses used. The aim of this pilot research was to identify the test conditions and the most appropriate method for the analysis of sway that may differentiate subjects with persistent whiplash associated disorders (WAD) from healthy controls. The six conditions of the Clinical Test for Sensory Interaction in Balance was performed in both comfortable and tandem stance in 20 subjects with persistent WAD compared to 20 control subjects. The analyses were carried out using a traditional method of measurement, total sway distance, to results obtained from the use of wavelet analysis. Subjects with WAD were significantly less able to complete the tandem stance tests on a firm surface than controls. In comfortable stance, using wavelet analysis, significant differences between subjects with WAD and the control group were evident in total energy of the trace for all test conditions apart from eyes open on the firm surface. In contrast, the results of the analysis using total sway distance revealed no significant differences between groups across all six conditions. Wavelet analysis may be more appropriate for detecting disturbances in balance in whiplash subjects because the technique allows separation of the noise from the underlying systematic effect of sway. These findings will be used to direct future studies on the aeitiology of balance disturbances in WAD. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effect of feed restriction on water balance and nutrient utilization was investigated in individually penned Boer x Saanen kids. Twenty-two male Boer x Saanen kids with an initial average live weight (LW) of 15 kg were used. Seven kids were slaughtered at the beginning of the experiment (reference animals) and the remainders were allocated to one of the three treatments (0, 30 and 60% restriction) and therefore there were five kids per treatment. The feed intake for the 0% restriction treatment animals determined the intake for the animals in the 30 and 60% restriction treatment. When the animals in the 0% restriction treatment group reached 25 kg LW, the animals in the 30 and 60% restriction treatment groups were also slaughtered. There was a negative relationship between DMI and water intake. The digestibility coefficients for DM, OM, carbohydrates, ash, ether extract, energy, NDF, ADF and lignin did not differ between treatments, whereas the digestibility coefficient for CP was different between treatment groups. The highest metabolic water production was in animals in the 0% restriction treatment group. No significant differences were observed in the composition of gastro-intestinal tract contents of the goats in the different treatments. Lower water retention was found in the animals in the 60% restriction treatment group. The study showed that feed restriction affected water intake, CP digestibility and water retention in the body of the kid goats. This experiment demonstrated that DM:water intake ratio changed when severe feed restriction was applied (60% restriction) and water was freely available. It shows a different pattern of behaviour of penned goats, particularly if feed intake is restricted and perhaps caution is needed to extrapolate results from nutritional and physiological trials in pens to goats at pasture. (c) 2005 Elsevier BX All rights reserved.