208 resultados para endothelial activity
em University of Queensland eSpace - Australia
Resumo:
Endothelial dysfunction is an early key event of atherogenesis. Both fitness level and exercise intervention have been shown to positively influence endothelial function. In a cross-sectional study of 47 children, the relationship between habitual physical activity and flow-mediated dilation (FMD) of the brachial artery was explored. Habitual physical activity levels (PALs) were assessed using a validated stable isotope technique, and FMD of the brachial artery was measured via high-resolution ultrasound. The results showed that habitual physical activity significantly correlated with FMD (r=0.39, P=0.007), and remained the most influential variable on dilation in multivariate analysis. Although both fitness level and exercise intervention have previously been shown to positively influence FMD, this is the first time that a relationship with normal PALs has been investigated, especially, at such a young age. These data support the concept that physical activity exerts its protective effect on cardiovascular health via the endothelium and add further emphasis to the importance of physical activity in childhood.
Resumo:
Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Purpose: To investigate the role of corneal endothelial surface enlargement in the chicken myopia model in inducing corneal endothelial changes. Methods: Lid suture was performed on one eye of 1-day-old cockerels. Five chickens were killed at 1 week, and four chickens killed at each of 3 weeks, 6 weeks, and 10 weeks postnatal. The endothelial morphology was obtained by flat mounting the endothelial surface and the subsequent digitisation. Comparisons were undertaken between the control unsutured eye and the lid-sutured eye endothelium, and between the central endothelial areas compared to the peripheral endothelial areas in both the myopic and the normal corneas. Calculation of the contribution to the endothelial change by hypertrophy and mitosis were calculated using Bahn's formula. Results: Total endothelial surface area increased significantly over time in the myopic model compared to control eyes but the mean cell area of endothelial cells remained the same for both the enlarged myopic endothelial surface area and in the normal controls. Sampling from the central and the peripheral corneal endothelial surface also disclosed no difference. The mean cell area did increase steadily with age but was the same for both normal and myopic corneas. Conclusions: It would appear that there are equal contributions from hypertrophy and mitosis in the myopic group and the normal corneal group with a slightly increasing trend towards mitotic activity in the myopic corneal endothelial layer.
Resumo:
To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. Methods: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 mum) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. Results: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P
Resumo:
The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.
Resumo:
Regular exercise is known to be effective in the prevention and treatment of cardiovascular disease. Among the cardioprotectant mechanisms influenced by exercise, the endothelium is becoming recognised as a major target. Preservation of endothelial cell structure is vital for frictionless blood flow, prevention of macrophage and lipid infiltration and, ultimately, optimal vascular function. Exercise causes various kinds of mechanical, chemical and thermal stresses, and repeated exposure to these stresses may precondition the endothelial cell to future stresses through a number of different mechanisms. This review discusses stress-induced changes in endothelial cell morphology, biochemistry and components of platelet activation and cell adhesion that impact on endothelial cell structure. An enhanced understanding of the effects of exercise on the endothelial cell will assist in directing future research into the prevention of cardiovascular disease. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Endothelial cell apoptosis contributes to atherosclerosis and may be exacerbated by oxidative stress. Results from clinical trials using antioxidant supplementation are equivocal and could be enhanced by antioxidants with additional non-antioxidant properties such as a-lipoic acid and alpha-tocopherol. The aim of this study was to investigate the effects of these antioxidants on cytoprotective pathways and endothelial apoptosis. Endothelial cells were incubated with alpha-lipoic acid and alpha-tocopherol, alone or in combination, prior to incubation with H2O2 or staurosporine. alpha-lipoic acid pre-treatment alone increased caspase-3 activity in a dose-dependent manner. Both H2O2 and staurosporine increased DNA fragmentation and caspase-3 activity and pre-treatment of cells with a-lipoic acid and/or a-tocopherol failed to prevent stress-induced apoptosis. Neither antioxidant treatments nor apoptotic inducers alone altered expressions of BcI-2, Bax, HSP70 or pERK1/2 or pJNK. alpha-lipoic decreased pERK2 in staurosporine-treated cells in a dose-dependent manner. These findings indicate that pre-incubation with alpha-lipoic acid and alpha-tocopherol, alone or in combination, does not protect against oxidative- or non-oxidative-induced apoptosis in endothelial cells. Moreover, we have demonstrated a non-antioxidant, dose-dependent role of alpha-lipoic acid in caspase-3 and ERK2 activation. These data provide an insight and indicate caution in the use of high doses of alpha-lipoic acid as an antioxidant.
Resumo:
Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase ( eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide ( NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral ( U) or bilateral ( B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor ( EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance ( RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 mu M furosemide. Autoregulation was enhanced by N-omega-nitro-L-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.
Resumo:
Atherosclerotic plaque contains apoptotic endothelial cells with oxidative stress implicated in this process. Vitamin E and a-lipoic acid are a potent antioxidant combination with the potential to prevent endothelial apoptosis. Regular exercise is known to increase myocardial protection, however, little research has investigated the effects of exercise on the endothelium. The purpose of these studies was to investigate the effects of antioxidant supplementation and/or exercise training on proteins that regulate apoptosis in endothelial cells. Male rats received a control or antioxidant-supplemented diet (vitamin E and alpha-lipoic acid) and were assigned to sedentary or exercise-trained groups for 14 weeks. Left ventricular endothelial cells (LVECs) were isolated and levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax were measured. Antioxidant supplementation caused a fourfold increase in Bcl-2 (P < 0.05) with no change in Bax (P > 0.05). Bcl-2:Bax was increased sixfold with antioxidant supplementation compared to non-supplemented animals (P < 0.05). Exercise training had no significant effect on Bcl-2, Bax or Bcl-2:Bax either alone or combined with antioxidant supplementation (P > 0.05) compared to non-supplemented animals. However, Bax was significantly lower (P < 0.05) in the supplemented trained group compared to non-supplemented trained animals. Cultured bovine endothelial cells incubated for 24 h with vitamin E and/or a-lipoic acid showed the combination of the two antioxidants increased Bcl-2 to a greater extent than cells incubated with the vehicle alone. In summary, vitamin E and a-lipoic acid increase endothelial cell Bcl-2, which may provide increased protection against apoptosis. (c) 2005 Elsevier Ltd. All rights reserved
Resumo:
Intense exercise stimulates the systemic release of a variety of factors that alter neutrophil surface receptor expression and functional activity. These alterations may influence resistance to infection after intense exercise. The aim of this study was to examine the influence of exercise intensity on neutrophil receptor expression, degranulation (measured by plasma and intracellular myeloperoxidase concentrations), and respiratory burst activity. Ten well-trained male runners ran on a treadmill for 60 min at 60% [moderate-intensity exercise (MI)] and 85% maximal oxygen consumption [high-intensity exercise (HI)]. Blood was drawn immediately before and after exercise and at 1 h postexercise. Immediately after HI, the expression of the neutrophil receptor CD16 was significantly below preexercise values (P < 0.01), whereas MI significantly reduced CD35 expression below preexercise values (P < 0.05). One hour after exercise at both intensities, there was a significant decline in CD11b expression (P < 0.05) and a further decrease in CD16 expression compared with preexercise values (P < 0.01). CD16 expression was lower 1 h after HI than 1 h after MI (P < 0.01). Immediately after HI, intracellular myeloperoxidase concentration was less than preexercise values (P < 0.01), whereas plasma myeloperoxidase concentration was greater (P < 0.01), indicating that HI stimulated neutrophil degranulation. Plasma myeloperoxidase concentration was higher immediately after HI than after MI (P < 0.01). Neutrophil respiratory burst activity increased after HI (P < 0.01). In summary, both MI and HI reduced neutrophil surface receptor expression. Although CD16 expression was reduced to a greater extent after HI, this reduction did not impair neutrophil degranulation and respiratory burst activity.
Resumo:
Being able to compare the energy cost of physical activity across and between populations is important. However, energy expenditure is related to body size, so it is necessary to appropriately adjust for differences in body size when comparisons are made. This study examined the relationship between the daily energy cost of activity and body weight in 47 children aged 6-10 years. Log-log regression showed weight(1.0) to be an inappropriate adjustment for activity energy expenditure in children, with a more valid adjustment being weight(0.3). Clearly, both weight dependent and non-weight dependent activities are part of everyday living in children. This balance influences how energy expenditure is correctly adjusted for body size. Investigators interpreting data of energy expenditure in children from children of different body sizes need to take this into consideration.
Resumo:
Objective: To compare the level of agreement in results obtained from four physical activity (PA) measurement instruments that are in use in Australia and around the world. Methods: 1,280 randomly selected participants answered two sets of PA questions by telephone. 428 answered the Active Australia (AA) and National Health Surveys, 427 answered the AA and CDC Behavioural Risk Factor Surveillance System surveys (BRFSS), and 425 answered the AA survey and the short International Physical Activity Questionnaire (IPAQ). Results: Among the three pairs of survey items, the difference in mean total PA time was lowest when the AA and NHS items were asked (difference=24) (SE:17) minutes, compared with 144 (SE:21) mins for AA/BRFSS and 406 (SE:27) mins for AA/IPAQ). Correspondingly, prevalence estimates for 'sufficiently active' were similar for AA and NHS (56% and 55% respectively), but about 10% higher when BRFSS data were used, and about 26% higher when the IPAQ items were used, compared with estimates from the AA survey. Conclusions: The findings clearly demonstrate that there are large differences in reported PA times and hence in prevalence estimates of 'sufficient activity' from these four measures. Implications: It is important to consistently use the same survey for population monitoring purposes. As the AA survey has now been used three times in national surveys, its continued use for population surveys is recommended so that trend data ever a longer period of time can be established.
Resumo:
Background: Concerns of a decrease in physical activity levels (PALs) of children and a concurrent increase in childhood obesity exist worldwide. The exact relation between these two parameters however has as yet to be fully defined in children. Objective: This study examined the relation in 47 children, aged 5–10.5 y (mean age 8.4plusminus0.9 y) between habitual physical activity, minutes spent in moderate, vigorous and hard intensity activity and body composition parameters. Design: Total energy expenditure (TEE) was calculated using the doubly labelled water technique and basal metabolic rate (BMR) was predicted from Schofield's equations. PAL was determined by PAL=TEE/BMR. Time spent in moderate, vigorous and hard intensity activity was determined by accelerometry, using the Tritrac-R3D. Body fatness and body mass index (BMI) were used as the two measures of body composition. Results: Body fat and BMI were significantly inversely correlated with PAL (r=-0.43, P=0.002 and r=-0.45, P=0.001). Times spent in vigorous activity and hard activity were significantly correlated to percentage body fat (r=-0.44, P=0.004 and r=-0.39, P=0.014), but not BMI. Children who were in the top tertiles for both vigorous activity and hard activity had significantly lower body fat percentages than those in the middle and lowest tertiles. Moderate intensity activity was not correlated with measures of body composition. Conclusions: As well as showing a significant relation between PAL and body composition, these data intimate that there may be a threshold of intensity of physical activity that is influential on body fatness. In light of world trends showing increasing childhood obesity, this study supports the need to further investigate the importance of physical activity for children.