9 resultados para endo 1,4 beta xylanase
em University of Queensland eSpace - Australia
Resumo:
Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.
Resumo:
Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1-->6)-alpha-galactose (Gal) substitution of the (1-->4)-beta-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense ("hairpin loop") constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T-1 generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T-1 generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T-2 generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase.
Resumo:
The two major steroidal saponins from the roots of Asparagus racemosus were isolated by RP-HPLC and their structure determined by extensive NMR studies. Their structures did not match those reported previously for shatavarins. I and IV and were found to be 3-O-{[beta-D-glueopyranosy](1 -> 2)][alpha-L-rhamnopyranosyl(1 -> 4)]-beta-D-glucopyranosyl}-26-O-(P-D-glu(opyranosyl)-(25S)5 beta-furostan-3p,22 alpha,26-triol and 3-O-{[beta-D-glueopyranosyl(1 -> 2)][alpha-L-rhamnopyranosyl(1 -> 4)]-beta-D-glucopyrariosyl}-(25S)-5 beta-spirostan-3 beta-ol. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A new steroidal saponin, shatavarin V, (3-O-{[alpha-L-rhamnopyranosy](1-2)][beta-D-glucopyranosyl(1 -> 4)]-beta-D-glucopyranosyl}-(25S)-5 beta-spirostan-3 beta-ol), was isolated from the roots of Asparagus racemosus by RP-HPLC, and its structure determined by 1D and 2D NMR studies. This data permits clarification of the structures reported for several known saponins: asparinins A and B; asparosides A and B; curillin H; curillosides G and H and shavatarins I and IV. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Obesity, with its related problems, is recognized as the fastest growing disease epidemic facing the world, yet we still have limited insight into the regulation of adipose tissue mass in humans. We have previously shown that adipose-derived microvascular endothelial cells (MVECs) secrete a factor(s) that increases proliferation of human preadipocytes. We now demonstrate that coculture of human preadipocytes with MVECs significantly increases preadipocyte differentiation, evidenced by dramatically increased triacylglycerol accumulation and glycerol-3-phosphate dehydrogenase activity compared with controls. Subsequent analysis identified fibroblast growth factor (FGF)-1 as an adipogenic factor produced by MVECs. Expression of FGF-1 was demonstrated in MVECs but not in preadipocytes, while preadipocytes were shown to express FGF receptors 1-4. The proliferative effect of MVECs on human preadipocytes was blocked using a neutralizing antibody specific for FGF-1. Pharmacological inhibition of FGF-1 signaling at multiple steps inhibits preadipocyte replication and differentiation, supporting the key adipogenic role of FGF-1. We also show that 3T3-L1 cells, a highly efficient murine model of adipogenesis, express FGF-1 and, unlike human preadipocytes, display no increased differentiation potential in response to exogenous FGF-1. Conversely, FGF-1-treated human preadipocytes proliferate rapidly and differentiate with high efficiency in a manner characteristic of 3T3-L1 cells. We therefore suggest that FGF-1 is a key human adipogenic factor, and these data expand our understanding of human fat tissue growth and have significant potential for development of novel therapeutic strategies in the prevention and management of human obesity.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Matrix accumulation in the renal tubulointerstitium is predictive of a progressive decline in renal function. Transforming growth factor-beta(1) (TGF-beta(1)) and, more recently, connective tissue growth factor (CTGF) are recognized to play key roles in mediating the fibrogenic response, independently of the primary renal insult. Further definition of the independent and interrelated effects of CTGF and TGF-beta(1) is critical for the development of effective antifibrotic strategies. CTGF (20 ng/ml) induced fibronectin and collagen IV secretion in primary cultures of human proximal tubule cells (PTC) and cortical fibroblasts (CF) compared with control values (P < 0.005 in all cases). This effect was inhibited by neutralizing antibodies to either TGF-beta or to the TGF-beta type II receptor (TbetaRII). TGF-beta(1) induced a greater increase in fibronectin and collagen IV secretion in both PTC (P < 0.01) and CF (P < 0.01) compared with that observed with CTGF alone. The combination of TGF-beta(1) and CTGF was additive in their effects on both PTC and CF fibronectin and collagen IV secretion. TGF-beta(1) (2 ng/ml) stimulated CTGF mRNA expression within 30 min, which was sustained for up to 24 h, with a consequent increase in CTGF protein (P < 0.05), whereas CTGF had no effect on TGF-beta(1) mRNA or protein expression. TGF-beta(1) (2 ng/ml) induced phosphorylated (p)Smad-2 within 15 min, which was sustained for up to 24 h. CTGF had a delayed effect on increasing pSmad-2 expression, which was evident at 24 h. In conclusion, this study has demonstrated the key dependence of the fibrogenic actions of CTGF on TGF-beta. It has further uniquely demonstrated that CTGF requires TGF-beta, signaling through the TbetaRII in both PTCs and CFs, to exert its fibrogenic response in this in vitro model.
Resumo:
Objective: To understand the basis of the effectiveness of carvedilol in heart failure by determining its specific properties at human heart and beta(2)-adrenoceptors. Methods: The positive inotropic effects of noradrenaline (in the presence of the beta(2)-selective antagonist ICI118551) and adrenaline (in the presence of the beta(1)-selective antagonist CGP20712), mediated through beta(1)- and beta(2)-adrenoceptors, respectively, were investigated in atrial and ventricular trabeculae. The patch-clamp technique was used to investigate effects of noradrenaline and adrenaline on L-type Ca2+ current in human atrial myocytes. Results: Carvedilol was a 13-fold more potent competitive antagonist of the effects of adrenaline at 1 2-adrenoceptors (-logK(B) = 10.13 +/- 0.08) than of noradrenaline at beta(1)-adrenoceptors (-logK(B) = 9.02 +/- 0.07) in human right atrium. Chronic carvedilol treatment of patients with non-terminal heart failure reduced the inotropic sensitivity of atrial trabeculae to noradrenaline and adrenaline 5.6-fold and 91.2-fold, respectively, compared to beta(1)-blocker-treated patients, consistent with persistent preferential blockade of beta(2)-adrenoceptors. In terminal heart failure carvedilol treatment reduced 1.8-fold and 25.1-fold the sensitivity of right ventricular trabeculae to noradrenaline and adrenaline, respectively, but metoprolol treatment did not reduce the sensitivity to the catecholamines. Increases of current (I-Ca,I-L) produced by noradrenaline and adrenaline were not different in atrial myocytes obtained from non-terminal heart failure patients treated with metoprolol or carvedilol, consistent with dissociation of both beta-blockers from the receptors. Conclusions: Carvedilol blocks human cardiac beta(2)-adrenoceptors more than beta(1)-adrenoceptors, thereby conceivably contributing to the beneficial effects in heart failure. The persistent blockade of beta-adrenoceptors is attributed to accumulation of carvedilol in cardiac tissue. (c) 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.