14 resultados para elevated temperature
em University of Queensland eSpace - Australia
Resumo:
Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.
Resumo:
The addition of 1 wt-%Sr to AE42 results in an improvement in the tensile strength of the alloy at elevated temperatures of 150 and 175degreesC and an improvement in the constant load creep properties at 175degreesC. The improved elevated temperature tensile and creep strength of the alloy can be attributed to the presence of a strontium-containing phase in the microstructure of the alloy along with an increase in the stability of the microstructure of the alloy at high temperatures. (C) 2004 W. S. Maney Son Ltd.
Resumo:
Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.
Resumo:
Coral reefs are the most diverse marine ecosystem and embrace possibly millions of plant, animal and protist species. Mutualistic symbioses are a fundamental feature of coral reefs that have been used to explain their structure, biodiversity and existence. Complex inter-relationships between hosts, habitats and symbionts belie closely coupled nutrient and community dynamics that create the circumstances for something from nothing (or the oasis in a nutrient desert). The flip side of these dynamics is a close dependency between species, which results in a series of non-linear relationships as conditions change. These responses are being highlighted as anthropogenic influences increase across the world's tropical and subtropical coastlines. Caribbean as well as Indo-Pacific coral populations are now in a serious decline in many parts of the world. This has resulted in a significant reorganization of how coral reef ecosystems function. Among the spectra of changes brought about by humans is rapid climate change. Mass coral bleaching - the loss of the dinoflagellate symbionts from reef-building corals - and mortality has affected the world's coral reefs with increasing frequency and intensity since the late 1970s. Mass bleaching events, which often cover thousands of square kilometres of coral reefs, are triggered by small increases (+1-3degreesC) in water temperature. These increases in sea temperature are often seen during warm phase weather conditions (e.g. ENSO) and are increasing in size and magnitude. The loss of living coral cover (e.g. 16% globally in 1998, an exceptionally warm year) is resulting in an as yet unspecified reduction in the abundance of a myriad of other species. Projections from general circulation models (GCM) used to project changes in global temperature indicate that conditions even under the mildest greenhouse gas emission scenarios may exceed the thermal tolerances of most reef-building coral communities. Research must now explore key issues such as the extent to which the thermal tolerances of corals and their symbionts are dynamic if bleaching and disease are linked; how the loss of high densities of reef-building coral will affect other dependent species; and, how the loss of coral populations will affect the millions of people globally who depend on coral reefs for their daily survival.
Resumo:
Recent episodes of mass coral bleaching, the loss of symbiotic dinoflagellates or photosynthetic pigment from hermatypic corals, have been triggered by elevated sea temperatures. Photosynthetic irradiance is an important secondary factor. Host based pigments (pocilloporins or Green Fluorescent Protein homologues) have been proposed to reduce the impact of elevated temperature by shading the dinoflagellate symbionts of corals, thereby reducing light stress. This study investigates this phenomenon in the reef-building coral Acropora aspera from Heron Island Research Station (Great Barrier Reef, Australia), which occurs as 3 distinct colour morphs. Experimental data showed that the host pigments are photoprotective at normal temperatures or
Resumo:
Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.
Resumo:
Extensive coral bleaching Occurred intertidally in early August 2003 in the Capricorn Bunker group (Wistari Reef, Heron and One Tree Islands; Southern Great Barrier Reef). The affected intertidal coral had been exposed to unusually cold (minimum = 13.3degreesC; wet bulb temperature = 9degreesC) and dry winds (44% relative humidity) for 2 d during predawn low tides. Coral bleached in the upper 10 cm of their branches and had less than 0.2 x 10(6) cell cm(-2) as compared with over 2.5 x 10(6), Cell cm(-2) in nonbleached areas. Dark-adapted quantum yields did not differ between symbionts in bleached and nonbleached areas. Exposing symbionts to light, however, led to greater quenching of Photosystem 11 in symbionts in the bleached coral. Bleached areas of the affected colonies had died by September 2003, with areas that were essentially covered by more than 80% living coral decreasing to less than 10% visible living coral cover. By January 2004, coral began to recover, principally from areas of colonies that were not exposed during low tide (i.e., from below dead, upper regions). These data highlight the importance of understanding local weather patterns as well as the effects of longer term trends in global climate.
Resumo:
Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.
Resumo:
Tungsten oxide microtubules, arrayed in a radial flower-like structure, were synthesized by simply using W powders reacting with Ni(NO3)(2) center dot 6H(2)O at a elevated temperature. The formed microtubules, with lengths more than 100 pin and outer diameters of 1-5 mu m, have irregular open ends, showing clear grooves along the growth direction on the tubule surface. A novel aggregation mechanism based on chemical-vapor-deposit process was proposed to describe the growth process of the synthesized tubules, and the possible mechanism for the arrangement of the radial flower-like morphology was discussed.
Resumo:
During the austral summer of 2001/2002, a coral epizootic occurred almost simultaneously with a bleaching event on the fringing reefs of Magnetic Island (Great Barrier Reef region), Australia. This resulted in a 3- to 4-fold increase in the mean percentage of partial mortality rate in a population of the hard coral Montipora aequituberculata. The putative disease state, ‘atramentous necrosis’, was observed on both bleached and normally-pigmented M. aequituberculata, and presented blackened lesions that spread within days across the colony surface and throughout the population. Diseased portions of the corals were only visible for 3 to 4 wk, with diseased tissues becoming covered in sediment and algae, which rapidly obscured evidence of the outbreak. Diseased colonies were again observed in the summer of 2002/2003 after being absent over the 2002 winter. Analysis of when diseased and bleached corals were first observed, and when and where the mortality occurred on individual colonies, indicated virtually all the mortality over the summer could be attributed to the disease and not to the bleaching. Fluorescence in situ hybridisation (FISH) techniques and cloning, and analysis of the 16S rRNA genes from diseased coral tissue, identified a mixed microbial assemblage in the diseased tissues particularly within the Alphaproteobacteria, Firmicutes and Bacteroidetes. While it is not possible in this study to distinguish between a disease-causing microbial community versus secondary invaders, the bacterial 16S rDNA sequences identified within the blackened lesions demonstrated high similarity to sequences from black band disease and white plague infected corals, suggesting either common aetiological agents or development of a bacterial community that is specific to degrading coral tissues. Temperature-induced coral disease outbreaks, with the potential for elevated levels of mortality, may represent an added problem for corals during the warmer summer months and an added dimension to predicted increases in water temperature from climate change.
Resumo:
Specialization to a particular environment is one of the main factors used to explain species distributions. Antarctic fishes are often cited as a classic example to illustrate the specialization process and are regarded as the archetypal stenotherms. Here we show that the Antarctic fish Pagothenia borchgrevinki has retained the capacity to compensate for chronic temperature change. By displaying astounding plasticity in cardiovascular response and metabolic control, the fishes maintained locomotory performance at elevated temperatures. Our falsification of the specialization paradigm indicates that the effect of climate change on species distribution and extinction may be overestimated by current models of global warming.
Resumo:
Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14-20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1 degrees-30.0 degrees C in mean increments of 0.4 +/- 0.1 degrees C (+/- SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5 degrees C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4 degrees-27.7 degrees C, and were smallest and had the lowest population densities at 25.8 degrees C and 28.8 degrees C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1 degrees C and 30 degrees C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.
Resumo:
Climate change is expected to affect the high latitudes first and most severely, rendering Antarctica one of the most significant baseline environments for the study of global climate change. The indirect effects of climate warming, including changes to the availability of key environmental resources, such as water and nutrients, are likely to have a greater impact upon continental Antarctic terrestrial ecosystems than the effects of fluctuations in temperature alone. To investigate the likely impacts of a wetter climate on Antarctic terrestrial communities a multiseason, manipulative field experiment was conducted in the floristically important Windmill Islands region of East Antarctica. Four cryptogamic communities (pure bryophyte, moribund bryophyte, crustose and fructicose lichen-dominated) received increased water and/or nutrient additions over two consecutive summer seasons. The increased water approximated an 18% increase in snow melt days (0.2 degrees C increase in temperature), while the nutrient addition of 3.5g Nm(-2) yr(-1) was within the range of soil N in the vicinity. A range of physiological and biochemical measurements were conducted in order to quantify the community response. While an overall increase in productivity in response to water and nutrient additions was observed, productivity appeared to respond more strongly to nutrient additions than to water additions. Pure bryophyte communities, and lichen communities dominated by the genus Usnea, showed stronger positive responses to nutrient additions, identifying some communities that may be better able to adapt and prosper under the ameliorating conditions associated with a warmer, wetter future climate. Under such a climate, productivity is overall likely to increase but some cryptogamic communities are likely to thrive more than others. Regeneration of moribund bryophytes appears likely only if a future moisture regime creates consistently moist conditions.