17 resultados para electronic structure of metals and alloys
em University of Queensland eSpace - Australia
Resumo:
The salient feature of metals is that unlike organic compounds they do not degrade in the environment and barely move from one environmental matrix to another. Human interventions take these compounds from their stable and non-bioavailable geological matrix into situations of biological accessibility. Studies in the 1970s and the 1980s of metal bioavailability and impacts of metals and metalloids were driven by the process of abatement of lead in the environment. Humans have clear and identifiable sources of exposure from fuels, food and leaded water pipes to lead. Interventions started at that time have dramatically lowered human lead exposure. Attention has now shifted to other metals, in particular, cadmium, which has seen increasing use. It is generally accepted that food crops grown on cadmium containing soils or soils naturally rich in this metal are the major source of exposure to humans other than exposure from smoking of cigarettes. This mini-review gives a summary and commentary on early studies on effects of lead on haem metabolism that provide us the clue to why investigations of the impacts of other toxic heavy metals and metalloids such as cadmium and arsenic on different human cytochrome P450 forms have become of great interest at the current time. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We give a theoretical treatment of the interaction of electronic excitations (excitions) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects. of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Forster resonant energy transfer.
Resumo:
Most modern models of personality are hierarchical, perhaps as a result of their development by means of exploratory factor analysis. Based on new ideas about the structure of personality and how it divides into biologically based and sociocognitively based components (as proposed by Carver, Cloninger, EUiot and Thrash, and ReveUe), I develop a series of rules that show how scales of personality may be linked from those that are most distal to those which are most proximal. I use SEM to confirm the proposed structure in scales of the Temperament Character Inventory (TCI) and the Eysenck Personality Profiler. Good fit is achieved and all proposed paths are significant. The model is then used to predict work performance, deviance and job satisfacdon.
Resumo:
Objective: The tripartite model of anxiety and depression has been proposed as a representation of the structure of anxiety and depression symptoms. The Mood and Anxiety Symptom Questionnaire (MASQ) has been put forwards as a valid measure of the tripartite model of anxiety and depression symptoms. This research set out to examine the factor structure of anxiety and depression symptoms in a clinical sample to assess the MASQ's validity for use in this population. MethodsThe present study uses confirmatory factor analytic methods to examine the psychometric properties of the MASQ in 470 outpatients with anxiety and mood disorder. Results: The results showed that none of the previously reported two-factor, three-factor or five-factor models adequately fit the data, irrespective of whether items or subscales were used as the unit of analysis. Conclusions: It was concluded that the factor structure of the MASQ in a mixed anxiety/depression clinical sample does not support a structure consistent with the tripartite model. This suggests that researchers using the MASQ with anxious/depressed individuals should be mindful of the instrument's psychometric limitations.
Resumo:
This paper represents an overview of the spectroscopic studies of both synthetic and naturally occurring beidellites performed as part of my research over the past 16 years. It shows that detailed information on the local structure of beidellite and changes in this local structure upon heating can be obtained by combining a range of spectroscopic techniques such as mid-infrared, near-infrared, infrared emission, Raman, nuclear magnetic resonance and X-ray photoelectron spectroscopy.
Resumo:
The effects of different concentrations of individual additions of rare earth metals (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) on eutectic modification in Al-10mass%Si has been studied by thermal analysis and optical microscopy. According to the twin-plane re-entrant edge (TPRE) and impurity induced twinning mechanism, rare earth metals with atomic radii of about 1.65 times larger than that of silicon, are possible candidates for eutectic modification. All of the rare earth elements caused a depression of the eutectic growth temperature, but only Eu modified the eutectic silicon to a fibrous morphology. At best, the remaining elements resulted in only a small degree of refinement of the plate-like silicon. The samples were also quenched during the eutectic arrest to examine the eutectic solidification modes. Many of the rare-earth additions significantly altered the eutectic solidification mode from that of the unmodified alloy. It is concluded that the impurity induced twinning model of modification, based on atomic radius alone, is inadequate and other mechanisms are essential for the modification process. Furthermore, modification and the eutectic nucleation and growth modes are controlled independently of each other.