15 resultados para electromagnetic wave propagation
em University of Queensland eSpace - Australia
Resumo:
The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.
Resumo:
The paper presents investigations into multiple input multiple output wireless communication systems, which are carried out from an electromagnetic perspective. The first part of the paper focuses on signal propagation models, which can be used for determining the MIMO system capacity or its performance when various space-time coding schemes are applied. Two types of models are considered. In the first model, array antennas are treated in an exact electromagnetic manner but interactions with scattering objects are incorporated using an approximate single bounce scattering approach. The other model is a simple but exact electromagnetic (EM) model, which takes into account EM interactions between antennas and scatterers. In this model, parallel wire dipoles represent antennas as well as scatterers. The second part of the paper reports on investigations into two types of MIMO testbeds. The first one is a simple transmit/receive diversity tested while the other one is a full MIMO testbed. The paper briefly describes the results obtained during the undertaken investigations
Resumo:
In this paper, we investigate transmission of electromagnetic wave through aperiodic dielectric multilayers. A generic feature shown is that the mirror symmetry in the system can induce the resonant transmission, which originates from the positional correlations (for example, presence of dimers) in the system. Furthermore, the resonant transmission can be manipulated at a specific wavelength by tuning aperiodic structures with internal symmetry. The theoretical results are experimentally proved in the optical observation of aperiodic SiO2/TiO2 multilayers with internal symmetry. We expect that this feature may have potential applications in optoelectric devices such as the wavelength division multiplexing system.
Resumo:
Recent years have witnessed intense research in multiple input multiple output (MIMO) wireless communications systems, which use multiple element antennas (MEA) for signal transmission and reception. In this paper, we have described a novel electromagnetic model to investigate the effect of mutual coupling, inter-element spacing and array geometry on the capacity of MIMO systems. Simulation results have been presented illustrating the application of the proposed model. The presented model concept stems from a hollow waveguide analogue. Using this model other aspects such as richness of scattering environment (spacing and clustering), the effect of hard versus soft scatterers and pin hole effect can be investigated.
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Strain localisation is a widespread phenomenon often observed in shear and compressive loading of geomaterials, for example, the fault gouge. It is believed that the main mechanisms of strain localisation are strain softening and mismatch between dilatancy and pressure sensitivity. Observations show that gouge deformation is accompanied by considerable rotations of grains. In our previous work as a model for gouge material, we proposed a continuum description for an assembly of particles of equal radius in which the particle rotation is treated as an independent degree of freedom. We showed that there exist critical values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-surface layers of the fault, even in the absence of inelasticity. Here, we generalise the model to the case of finite deformations characteristic for the gouge deformation. We derive objective constitutive relationships relating the Jaumann rates of stress and moment stress to the relative strain and curvature rates, respectively. The model suggests that the pattern of localisation remains the same as in the linear case. However, the presence of the Jaumann terms leads to the emergence of non-zero normal stresses acting along and perpendicular to the shear layer (with zero hydrostatic pressure), and localised along the mid-line of the gouge; these stress components are absent in the linear model of simple shear. These additional normal stresses, albeit small, cause a change in the direction in which the maximal normal stresses act and in which en-echelon fracturing is formed.
Resumo:
The design of an antenna that combines a radial line slot array and a circular patch to operate as a dual band (2.4/5.2 GHz) antenna at the access point of a WLAN is presented. The design has been accomplished using commercially available Ansoft HFSS and in-house developed software. The designed antenna shows good performance in terms of return losses, radiation pattern and circular polarization in the two, 2.4 and 5.2 GHz, frequency bands. Due to its good electrical performance and a relatively low profile and low developmental cost, it should be found attractive for use as an access point antenna for dual band operation.
Resumo:
Simple design formulas for designing ultra wideband (UWB) antennas in the form of complementary planar monopoles are described and their validity is tested using full electromagnetic wave simulations and measurements. Assuming dielectric substrate with relative permittivity of 10.2, the designed antennas feature a small size of 13 mmtimes26 mm. They exhibit a 10 dB return loss bandwidth from 3 to more than 15 GHz accompanied by near omnidirectional characteristics and good radiation efficiency throughout this band
Resumo:
The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal.
Resumo:
Multiple input multiple output (MIMO) wireless systems use multiple element antennas (MEAs) tit the transmitter (TX) and the receiver (RX) in order to offer improved information rates (capacity) over conventional single antenna systems in rich scattering environments. In this paper, an example of a simple MIMO system is considered in which both antennas and scattering objects is are formed by wire dipoles. Such it system can be analyzed in the strict electromagnetic (EM) sense and its capacity can be determined for varying array size, interelement spacing, and distributions of scatterers. The EM model of this MIMO system can be used to assess the validity of single- or double-bounce scattering models for mixed line of sight (LOS) and non-line of sight (NLOS) signal-propagation conditions. (c) 2006 Wiley Periodicals, Inc.
Resumo:
This article presents various novel and conventional planar electromagnetic bandgap (EBG)-assisted transmission lines. Both microstrip lines and coplanar waveguides (CPWs) are designed with circular, rectangular, annular, plus-sign and fractal-patterned EBGs and dumbbell-shaped defected ground structure (DGS). The dispersion characteristics and the slow-wave factors of the design are investigated. (c) 2006 Wiley Periodicals, Inc.