18 resultados para eigenvalues and eigenfunctions

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The A(n-1)((1)) trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A central feature in the Hilbert space formulation of classical mechanics is the quantisation of classical Lionville densities, leading to what may be termed Groenewold operators. We investigate the spectra of the Groenewold operators that correspond to Gaussian and to certain uniform Lionville densities. We show that when the classical coordinate-momentum uncertainty product falls below Heisenberg's limit, the Groenewold operators in the Gaussian case develop negative eigenvalues and eigenvalues larger than 1. However, in the uniform case, negative eigenvalues are shown to persist for arbitrarily large values of the classical uncertainty product.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The XXZ Gaudin model with generic integrable boundaries specified by generic non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The A(n-1) Gaudin model with integrable boundaries specified by non-diagonal K-matrices is studied. The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The eigenvalues and the corresponding Bethe ansatz equations are obtained. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simultaneous design of the steady-state and dynamic performance of a process has the ability to satisfy much more demanding dynamic performance criteria than the design of dynamics only by the connection of a control system. A method for designing process dynamics based on the use of a linearised systems' eigenvalues has been developed. The eigenvalues are associated with system states using the unit perturbation spectral resolution (UPSR), characterising the dynamics of each state. The design method uses a homotopy approach to determine a final design which satisfies both steady-state and dynamic performance criteria. A highly interacting single stage forced circulation evaporator system, including control loops, was designed by this method with the goal of reducing the time taken for the liquid composition to reach steady-state. Initially the system was successfully redesigned to speed up the eigenvalue associated with the liquid composition state, but this did not result in an improved startup performance. Further analysis showed that the integral action of the composition controller was the source of the limiting eigenvalue. Design changes made to speed up this eigenvalue did result in an improved startup performance. The proposed approach provides a structured way to address the design-control interface, giving significant insight into the dynamic behaviour of the system such that a systematic design or redesign of an existing system can be undertaken with confidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an electronic model with long range interactions. Through the quantum inverse scattering method, integrability of the model is established using a one-parameter family of typical irreducible representations of gl(211). The eigenvalues of the conserved operators are derived in terms of the Bethe ansatz, from which the energy eigenvalues of the Hamiltonian are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A full set of (higher-order) Casimir invariants for the Lie algebra gl(infinity) is constructed and shown to be well defined in the category O-FS generated by the highest weight (unitarizable) irreducible representations with only a finite number of nonzero weight components. Moreover, the eigenvalues of these Casimir invariants are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(infinity) are also determined and generalize those previously obtained for gl(n) by Bracken and Green [A. J. Bracken and H. S. Green, J. Math. Phys. 12, 2099 (1971); H. S. Green, ibid. 12, 2106 (1971)]. (C) 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What fundamental constraints characterize the relationship between a mixture rho = Sigma (i)p(i)rho (i) of quantum states, the states rho (i) being mixed, and the probabilities p(i)? What fundamental constraints characterize the relationship between prior and posterior states in a quantum measurement? In this paper we show that then are many surprisingly strong constraints on these mixing and measurement processes that can be expressed simply in terms of the eigenvalues of the quantum states involved. These constraints capture in a succinct fashion what it means to say that a quantum measurement acquires information about the system being measured, and considerably simplify the proofs of many results about entanglement transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.