19 resultados para economic production model
em University of Queensland eSpace - Australia
Resumo:
The standard approach to modelling production under uncertainty has relied on the concept of the stochastic production function. In the present paper, it is argued that a state-contingent production model is more flexible and realistic. The model is applied to the problem of drought policy.
Resumo:
This paper develops an Internet geographical information system (GIS) and spatial model application that provides socio-economic information and exploratory spatial data analysis for local government authorities (LGAs) in Queensland, Australia. The application aims to improve the means by which large quantities of data may be analysed, manipulated and displayed in order to highlight trends and patterns as well as provide performance benchmarking that is readily understandable and easily accessible for decision-makers. Measures of attribute similarity and spatial proximity are combined in a clustering model with a spatial autocorrelation index for exploratory spatial data analysis to support the identification of spatial patterns of change. Analysis of socio-economic changes in Queensland is presented. The results demonstrate the usefulness and potential appeal of the Internet GIS applications as a tool to inform the process of regional analysis, planning and policy.
Resumo:
In this paper we investigate the trade-off faced by regulators who must set a price for an intermediate good somewhere between the marginal cost and the monopoly price. We utilize a growth model with monopolistic suppliers of intermediate goods. Investment in innovation is required to produce a new intermediate good. Marginal cost pricing deters innovation, while monopoly pricing maximizes innovation and economic growth at the cost of some static inefficiency. We demonstrate the existence of a second-best price above the marginal cost but below the monopoly price, which maximizes consumer welfare. Simulation results suggest that substantial reductions in consumption, production, growth, and welfare occur where regulators focus on static efficiency issues by setting prices at or near marginal cost.
Resumo:
The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).
Resumo:
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.
Resumo:
In Queensland, Australia, there is presently a high level of interest in long-rotation hardwood plantation investments for sawlog production, despite the consensus in Australian literature that such investments are not financially viable. Continuing genetics, silviculture and processing research, and increasing awareness about the ecosystem services generated by plantations, are anticipated to make future plantings profitable and socio-economically desirable in many parts of Queensland. Financial and economic models of hardwood plantations in Queensland are developed to test this hypothesis. The economic model accounts for carbon sequestration, salinity amelioration and other ecosystem service values of hardwood plantations. A carbon model estimates the value of carbon sequestered, while salinity and other ecosystem service values are estimated by the benefit transfer method. Where high growth rates (20-25 m(3) ha(-1) year(-1)) are achievable, long-rotation hardwood plantations are profitable in Queensland Hardwood Regions 1, 3 and 7 when rural land values are less than $2300/ha. Under optimistic assumptions, hardwood plantations growing at a rate of 15 in 3 ha-1 year 1 are financially viable in Hardwood Regions 2, 4 and 8, provided land values are less than $1600/ha. The major implication of the economic analysis is that long-rotation hardwood plantation forestry is socio-economically justified in most Hardwood Regions, even though financial returns from timber production may be negative. (c) 2003 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a portable process for developing a triple bottom line model to measure the knowledge production performance of individual research centres. For the first time, this study also empirically illustrates how a fully units-invariant model of Data Envelopment Analysis (DEA) can be used to measure the relative efficiency of research centres by capturing the interaction amongst a common set of multiple inputs and outputs. This study is particularly timely given the increasing transparency required by governments and industries that fund research activities. The process highlights the links between organisational objectives, desired outcomes and outputs while the emerging performance model represents an executive managerial view. This study brings consistency to current measures that often rely on ratios and univariate analyses that are not otherwise conducive to relative performance analysis.
Resumo:
The speculation that climate change may impact on sustainable fish production suggests a need to understand how these effects influence fish catch on a broad scale. With a gross annual value of A$ 2.2 billion, the fishing industry is a significant primary industry in Australia. Many commercially important fish species use estuarine habitats such as mangroves, tidal flats and seagrass beds as nurseries or breeding grounds and have lifecycles correlated to rainfall and temperature patterns. Correlation of catches of mullet (e.g. Mugil cephalus) and barramundi (Lates calcarifer) with rainfall suggests that fisheries may be sensitive to effects of climate change. This work reviews key commercial fish and crustacean species and their link to estuaries and climate parameters. A conceptual model demonstrates ecological and biophysical links of estuarine habitats that influences capture fisheries production. The difficulty involved in explaining the effect of climate change on fisheries arising from the lack of ecological knowledge may be overcome by relating climate parameters with long-term fish catch data. Catch per unit effort (CPUE), rainfall, the Southern Oscillation Index (SOI) and catch time series for specific combinations of climate seasons and regions have been explored and surplus production models applied to Queensland's commercial fish catch data with the program CLIMPROD. Results indicate that up to 30% of Queensland's total fish catch and up to 80% of the barramundi catch variation for specific regions can be explained by rainfall often with a lagged response to rainfall events. Our approach allows an evaluation of the economic consequences of climate parameters on estuarine fisheries. thus highlighting the need to develop forecast models and manage estuaries for future climate chan e impact by adjusting the quota for climate change sensitive species. Different modelling approaches are discussed with respect to their forecast ability. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Objective To investigate the extent of heat load problems, caused by the combination of excessive temperature and humidity, in Holstein-Friesian cows in Australia. Also, to outline how milk production losses and consequent costs from this can be estimated and minimised. Procedures Long-term meteorological data for Australia were analysed to determine the distribution of hot conditions over space and time. Fifteen dairy production regions were identified for higher-resolution data analysis. Both the raw meteorological data and their integration into a temperature-humidity thermal index were compiled onto a computer program. This mapping software displays the distribution of climatic patterns, both Australia-wide and within the selected dairying regions. Graphical displays of the variation in historical records for 200 locations in the 15 dairying regions are also available. As a separate study, production data from research stations, on-farm trials and milk factory records were statistically analysed and correlated with the climatic indices, to estimate production losses due to hot conditions. Results Both milk yields and milk constituents declined with increases in the temperature-humidity index. The onset and rate of this decline are dependent on a number of factors, including location, level of production, adaptation, and management regime. These results have been integrated into a farm-level economic analysis for managers of dairy properties. Conclusion By considering the historical patterns of hot conditions over time and space, along with expected production losses, managers of dairy farms can now conduct an economic evaluation of investment strategies to alleviate heat loads. These strategies include the provision of sprinklers, shade structures, or combinations of these.