38 resultados para ecological pest management
em University of Queensland eSpace - Australia
Resumo:
Maximizing the contribution of endemic natural enemies to integrated pest management (IPM) programs requires a detailed knowledge of their interactions with the target pest. This experimental field study evaluated the impact of the endemic natural enemy complex of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) on pest populations in commercial cabbage crops in southeastern Queensland, Australia. Management data were used to score pest management practices at experimental sites on independent Brassica farms practicing a range of pest management strategies, and mechanical methods of natural enemy exclusion were used to assess the impact of natural enemies on introduced cohorts of P. xylostella at each site. Natural enemy impact was greatest at sites adopting IPM and least at sites practicing conventional pest management strategies. At IPM sites, the contribution of natural enemies to P. xylostella mortality permitted the cultivation of marketable crops with no yield loss but with a substantial reduction in insecticide inputs. Three species of larval parasitoids (Diadegma semiclausum Hellen [Hymenoptera: Ichneumonidae], Apanteles ippeus Nixon [Hymenoptera: Braconidae], and Oomyzus sokolowskii Kurdjumov [Hymenoptera: Eulophidae]) and one species of pupal parasitoid Diadromus collaris Gravenhorst (Hymenoptera: Ichneumonidae) attacked immature P. xylostella. The most abundant groups of predatory arthropods caught in pitfall traps were Araneae (Lycosidae) > Coleoptera (Carabidae, Coccinelidae, Staphylinidae) > Neuroptera (Chrysopidae) > Formicidae, whereas on crop foliage Araneae (Clubionidae, Oxyopidae) > Coleoptera (Coccinelidae) > Neuroptera (Chrysopidae) were most common. The abundance and diversity of natural enemies was greatest at sites that adopted IPM, correlating greater P. xylostella mortality at these sites. The efficacy of the natural enemy complex to pest mortality under different pest management regimes and appropriate strategies to optimize this important natural resource are discussed.
Resumo:
1. The spatial heterogeneity of predator populations is an important component of ecological theories pertaining to predator-prey dynamics. Most studies within agricultural fields show spatial correlation (positive or negative) between mean predator numbers and prey abundance across a whole field over time but generally ignore the within-field spatial dimension. We used explicit spatial mapping to determine if generalist predators aggregated within a soybean field, the size of these aggregations and if predator aggregation was associated with pest aggregation, plant damage and predation rate. 2. The study was conducted at Gatton in the Lockyer Valley, 90 km west of Brisbane, Australia. Intensive sampling grids were used to investigate within-field spatial patterns. The first row of each grid was located in a lucerne field (10 m from interface) and the remaining rows were in an adjacent soybean field. At each point on the grid the abundance of foliage-dwelling and ground-dwelling pests and predators was measured, predation rates [using sentinel Helicoverpa armigera (Hubner) egg cards] and plant damage were estimated. Eight grids were sampled across two summer cropping seasons (2000/01, 2001/02). 3. Predators exhibited strong spatial patterning with regions of high and low abundance and activity within what are considered to be uniform soybean fields. Ground-dwelling and foliage-dwelling predators were often aggregated in patches approximately 40 m across. 4. Lycosidae (wolf spiders) displayed aggregation and were consistently more abundant within the lucerne, with a decreasing trap catch with distance from the lucrene/soybean interface. This trend was consistent between subsequent grids in a single field and between fields. 5. The large amount of spatial variability in within-field arthropod abundance (pests and predators) and activity (egg predation and plant damage) indicates that whole field averages were misleading. This result has serious implications for sampling of arthropod abundance and pest management decision-making based on scouting data. 6. There was a great deal of temporal change in the significant spatial patterns observed within a field at each sampling time point during a single season. Predator and pest aggregations observed in these fields were generally not stable for the entire season. 7. Predator aggregation did not correlate consistently with pest aggregation, plant damage or predation rate. Spatial patterns in predator abundance were not associated consistently with any single parameter measured. The most consistent positive association was between foliage-dwelling predators and pests (significant in four of seven grids). Inferring associations between predators and prey based on an intensive one-off sampling grid is difficult, due to the temporal variability in the abundance of each group. 8. Synthesis and applications. This study demonstrated that generalist predator populations are rarely distributed randomly and field edges and adjacent crops can have an influence on within-field predator abundance. This must be considered when estimating arthropod (pest and predator) abundance from a set of samples taken at random locations within a field.
Resumo:
The polyphagous moth Helicoverpa armigera (Hubner) is one of the world's most important agricultural pests. A number of existing approaches and future designs for management of H. armigera rely on the assumption that moths do not exhibit either genetically and/or non-genetically based variation for host plant utilization. We review recent empirical evidence demonstrating that both these forms of variation influence host plant use in this moth. The significance of this variation in H. armigera in relation to current and future pest management strategies is examined. We provide recommendations on future research needs and directions for sustainable management of H. armigera, under a framework that includes consideration of intra.-specific variation for host use relevant in this and other similar pest species. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Both large and small scale migrations of Helicoverpa armigera Hübner in Australia were investigated using AMOVA analysis and genetic assignment tests. Five microsatellite loci were screened across 3142 individuals from 16 localities in eight major cotton and grain growing regions within Australia, over a 38-month period (November 1999 to January 2003). From November 1999 to March 2001 relatively low levels of migration were characterized between growing regions. Substantially higher than average gene-flow rates and limited differentiation between cropping regions characterized the period from April 2001 to March 2002. A reduced migration rate in the year from April 2002 to March 2003 resulted in significant genetic structuring between cropping regions. This differentiation was established within two or three generations. Genetic drift alone is unlikely to drive genetic differentiation over such a small number of generations, unless it is accompanied by extreme bottlenecks and/or selection. Helicoverpa armigera in Australia demonstrated isolation by distance, so immigration into cropping regions is more likely to come from nearby regions than from afar. This effect was most pronounced in years with limited migration. However, there is evidence of long distance dispersal events in periods of high migration (April 2001-March 2002). The implications of highly variable migration patterns for resistance management are considered.
Resumo:
The population dynamics of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in the Murrumbidgee Valley, Australia, has been characterized using five highly variable microsatellite loci. In the 2001-2002 growing season, there were very high levels of migration into the Murrumbidgee Valley with no detectable genetic structuring, consistent with previous analyses on a national scale. By contrast, there was significant genetic structuring over the 2002-2003 growing season, with three distinct genetic types detected. The first type corresponded to the first two generations and was derived from local individuals emerging from diapause and their progeny. The second genetic type corresponded to generation 3 and resulted from substantial immigration into the region. There was another genetic shift in generation 4, which accounts for the third genetic type of the season. This genetic shift occurred despite low levels of immigration. During the third generation of the 2002-2003 growing season, different population dynamics was characterized for H. armigera on maize, Zea mays L., and cotton Gossipium hirsutum L. Populations on cotton tended to cycle independently with very little immigration from outside the region or from maize within the region. Maize acted as a major sink for immigrants from cotton and from outside the region. If resistance were to develop on cotton under these circumstances, susceptible individuals from maize or from other regions would not dilute this resistance. In addition, resistance is likely to be transferred to maize and be perpetuated until diapause, from where it may reemerge next season. If low levels of immigration were to occur on transgenic cotton, this may undermine the effectiveness of refugia, especially noncotton refugia.
Resumo:
Determining the diet of insects present in cotton should be among the first steps in any applied research program. Omnivorous species are particularly important as they have the potential to suppress pest populations through prey feeding, but also to cause economic damage to the crop through plant feeding.
Resumo:
Increasing loss of conventional fungicides due to pathogen resistance and general unacceptability in terms of public and environmental risk have favoured the introduction of integrated pest management (IPM) programmes. Induction of natural disease resistance (NDR) in harvested horticultural crops using physical, biological and/or chemical elicitors has received increasing attention over recent years, it being considered a preferred strategy for disease management. This article reviews the enhancement of constitutive and inducible antifungal compounds and suppression of postharvest diseases through using elicitors. The effect of timing of pre- and/or postharvest elicitor treatment and environment on the degree of elicitation and the potential for inducing local acquired resistance, systemic acquired resistance and/or induced systemic resistance to reduce postharvest disease is discussed. The review highlights that more applied and basic research is required to understand the role that induced NDR can play in achieving practical suppression of postharvest diseases as part of an IPM approach. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro-ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life-table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k-values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.
Resumo:
Lucerne (Medicago sativa) has been suggested as an ideal refuge habitat as part of an integrated pest management (IPM) program because it harbours high numbers of beneficial arthropods. Whether or not cutting of lucerne encourages the movement of these beneficials into adjacent target crops is unknown. Vacuum samples were used to determine the effects of cutting lucerne on arthropod abundance (pests and predators) within lucerne and adjacent soybean (Glycine max) crops. Vacuum-sample collections of arthropods were conducted before and after lucerne cutting on seven occasions in four fields over two seasons. In the lucerne, 10 m by 1 m strips parallel to the crop interface were sampled at 5, 10, 15, 20 and 30 m from the interface. In the soybean, 10 m of row were sampled at the same distances from the crop interface. The abundance of predators in lucerne was reduced immediately after cutting at all distances from the interface. Predator abundance in soybean did not show any change. The cutting of lucerne significantly reduced pest numbers within the lucerne but had little effect on pest abundance in the adjacent soybean. The temporal pattern in pest and predator abundance was very different for each field sampled. Generally, arthropods decreased in abundance after cutting and gradually increased as the lucerne grew back. In soybeans, arthropod numbers fluctuated regardless of the cutting of the lucerne. Cutting of lucerne alone does not guarantee movement of predators into the adjacent target crop. The presence of lucerne fields within a cropping area may have some impact on regional predator populations, and so still be useful for IPM programs, but this has yet to be tested critically.