138 resultados para dynamic visual noise
em University of Queensland eSpace - Australia
Resumo:
Objectives. Intrusive memories of extreme trauma can disrupt a stepwise approach to imaginal exposure. Concurrent tasks that load the visuospatial sketchpad (VSSP) of working memory reduce the vividness of recalled images. This study tested whether relief of distress from competing VSSP tasks during imaginal exposure is at the cost of impaired desensitization. Design. This study examined repeated exposure to emotive memories using 18 unselected undergraduates and a within-subjects design with three exposure conditions (Eye Movement, Visual Noise, Exposure Alone) in random, counterbalanced order. Method. At baseline, participants recalled positive and negative experiences, and rated the vividness and emotiveness of each image. A different positive and negative recollection was then used for each condition. Vividness and emotiveness were rated after each of eight exposure trials. At a post-exposure session 1 week later, participants rated each image without any concurrent task. Results. Consistent with previous research, vividness and distress during imaging were lower during Eye Movements than in Exposure Alone, with passive visual interference giving intermediate results. A reduction in emotional responses from Baseline to Post was of similar size for the three conditions. Conclusion. Visuospatial tasks may offer a temporary response aid for imaginal exposure without affecting desensitization.
Resumo:
A set of five tasks was designed to examine dynamic aspects of visual attention: selective attention to color, selective attention to pattern, dividing and switching attention between color and pattern, and selective attention to pattern with changing target. These varieties of visual attention were examined using the same set of stimuli under different instruction sets; thus differences between tasks cannot be attributed to differences in the perceptual features of the stimuli. ERP data are presented for each of these tasks. A within-task analysis of different stimulus types varying in similarity to the attended target feature revealed that an early frontal selection positivity (FSP) was evident in selective attention tasks, regardless of whether color was the attended feature. The scalp distribution of a later posterior selection negativity (SN) was affected by whether the attended feature was color or pattern. The SN was largely unaffected by dividing attention across color and pattern. A large widespread positivity was evident in most conditions, consisting of at least three subcomponents which were differentially affected by the attention conditions. These findings are discussed in relation to prior research and the time course of visual attention processes in the brain. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Primates have X chromosome genes for cone photopigments with sensitivity maxima from 535 to 562 nm. Old World monkeys and apes (catarrhines) and the New World ( platyrrhine) genus Alouatta have separate genes for 535-nm ( medium wavelength; M) and 562-nm ( long wavelength; L) pigments. These pigments, together with a 425-nm ( short wavelength) pigment, permit trichromatic color vision. Other platyrrhines and prosimians have a single X chromosome gene but often with alleles for two or three M/L photopigments. Consequently, heterozygote females are trichromats, but males and homozygote females are dichromats. The criteria that affect the evolution of M/L alleles and maintain genetic polymorphism remain a puzzle, but selection for finding food may be important. We compare different types of color vision for detecting more than 100 plant species consumed by tamarins ( Saguinus spp.) in Peru. There is evidence that both frequency-dependent selection on homozygotes and heterozygote advantage favor M/L polymorphism and that trichromatic color vision is most advantageous in dim light. Also, whereas the 562-nm allele is present in all species, the occurrence of 535- to 556-nm alleles varies between species. This variation probably arises because trichromatic color vision favors widely separated pigments and equal frequencies of 535/543- and 562-nm alleles, whereas in dichromats, long-wavelength pigment alleles are fitter.
Resumo:
In this experiment, we examined the extent to which the spatiotemporal reorganization of muscle synergies mediates skill acquisition on a two degree-of-freedom (df) target-acquisition task. Eight participants completed five practice sessions on consecutive days. During each session they practiced movements to eight target positions presented by a visual display. The movements required combinations of flexion/extension and pronation/supination of the elbow joint complex. During practice sessions, eight targets displaced 5.4 cm from the start position ( representing joint excursions of 54) were presented 16 times. During pre- and posttests, participants acquired the targets at two distances (3.6 cm [36 degrees] and 7.2 cm [72 degrees]). EMG data were recorded from eight muscles contributing to the movements during the pre- and posttests. Most targets were acquired more rapidly after the practice period. Performance improvements were, in most target directions, accompanied by increases in the smoothness of the movement trajectories. When target acquisition required movement in both dfs, there were also practice-related decreases in the extent to which the trajectories deviated from a direct path to the target. The contribution of monofunctional muscles ( those producing torque in a single df) increased with practice during movements in which they acted as agonists. The activity in bifunctional muscles ( those contributing torque in both dfs) remained at pretest levels in most movements. The results suggest that performance gains were mediated primarily by changes in the spatial organization of muscles synergies. These changes were expressed most prominently in terms of the magnitude of activation of the monofunctional muscles.
Resumo:
Animal color pattern phenotypes evolve rapidly. What influences their evolution? Because color patterns are used in communication, selection for signal efficacy, relative to the intended receiver's visual system, may explain and predict the direction of evolution. We investigated this in bowerbirds, whose color patterns consist of plumage, bower structure, and ornaments and whose visual displays are presented under predictable visual conditions. We used data on avian vision, environmental conditions, color pattern properties, and an estimate of the bowerbird phylogeny to test hypotheses about evolutionary effects of visual processing. Different components of the color pattern evolve differently. Plumage sexual dimorphism increased and then decreased, while overall (plumage plus bower) visual contrast increased. The use of bowers allows relative crypsis of the bird but increased efficacy of the signal as a whole. Ornaments do not elaborate existing plumage features but instead are innovations (new color schemes) that increase signal efficacy. Isolation between species could be facilitated by plumage but not ornaments, because we observed character displacement only in plumage. Bowerbird color pattern evolution is at least partially predictable from the function of the visual system and from knowledge of different functions of different components of the color patterns. This provides clues to how more constrained visual signaling systems may evolve.
Resumo:
Dynamic spectrum management (DSM) comprises a new set of techniques for multiuser power allocation and/or detection in digital subscriber line (DSL) networks. At the Alcatel Research and Innovation Labs, we have recently developed a DSM test bed, which allows the performance of DSM algorithms to be evaluated in practice. With this test bed, we have evaluated the performance of a DSM level-1 algorithm known as iterative water-filling in an ADSL scenario. This paper describes the results of, on the one hand, the performance gains achieved with iterative water-filling, and, on the other hand, the nonstationary noise robustness of DSM-enabled ADSL modems. It will be shown that DSM trades off nonstationary noise robustness for performance improvements. A new bit swap procedure is then introduced to increase the noise robustness when applying DSM.
Resumo:
Granule impact deformation has long been recognised as important in determining whether or not two colliding granules will coalesce. Work in the last 10 years has highlighted the fact that viscous effects are significant in granulation. The relative strengths of different formulations can vary with strain rate. Therefore, traditional strength measurements made at pseudo-static conditions give no indication, even qualitatively, of how materials will behave at high strain rates, and hence are actually misleading when used to model granule coalescence. This means that new standard methods need to be developed for determining the strain rates encountered by granules inside industrial equipment and also for measuring the mechanical properties of granules at these strain rates. The constitutive equations used in theoretical models of granule coalescence also need to be extended to include strain-rate dependent components.
Resumo:
Some motor tasks can be completed, quite literally, with our eyes shut. Most people can touch their nose without looking or reach for an object after only a brief glance at its location. This distinction leads to one of the defining questions of movement control: is information gleaned prior to starting the movement sufficient to complete the task (open loop), or is feedback about the progress of the movement required (closed loop)? One task that has commanded considerable interest in the literature over the years is that of steering a vehicle, in particular lane-correction and lane-changing tasks. Recent work has suggested that this type of task can proceed in a fundamentally open loop manner [1 and 2], with feedback mainly serving to correct minor, accumulating errors. This paper reevaluates the conclusions of these studies by conducting a new set of experiments in a driving simulator. We demonstrate that, in fact, drivers rely on regular visual feedback, even during the well-practiced steering task of lane changing. Without feedback, drivers fail to initiate the return phase of the maneuver, resulting in systematic errors in final heading. The results provide new insight into the control of vehicle heading, suggesting that drivers employ a simple policy of “turn and see,” with only limited understanding of the relationship between steering angle and vehicle heading.
Resumo:
Studies concerning the processing of natural scenes using eye movement equipment have revealed that observers retain surprisingly little information from one fixation to the next. Other studies, in which fixation remained constant while elements within the scene were changed, have shown that, even without refixation, objects within a scene are surprisingly poorly represented. Although this effect has been studied in some detail in static scenes, there has been relatively little work on scenes as we would normally experience them, namely dynamic and ever changing. This paper describes a comparable form of change blindness in dynamic scenes, in which detection is performed in the presence of simulated observer motion. The study also describes how change blindness is affected by the manner in which the observer interacts with the environment, by comparing detection performance of an observer as the passenger or driver of a car. The experiments show that observer motion reduces the detection of orientation and location changes, and that the task of driving causes a concentration of object analysis on or near the line of motion, relative to passive viewing of the same scene.
Resumo:
We examined the influence of backrest inclination and vergence demand on the posture and gaze angle that-workers adopt to view visual targets placed in different vertical locations. In the study 12 participants viewed a small video monitor placed in 7 locations around a 0.65-m radius arc (from 650 below to 300 above horizontal eye height). Trunk posture was manipulated by changing the backrest inclination of an adjustable chair. Vergence demand was manipulated by using ophthalmic lenses and prisms to mimic the visual consequences of varying target distance. Changes in vertical target location caused large changes in atlantooccipital posture and gaze angle. Cervical posture was altered to a lesser extent by changes in vertical target location. Participants compensated for changes in backrest inclination by changing cervical posture, though they did not significantly alter atlanto-occipital posture and gaze angle. The posture adopted to view any target represents a compromise between visual and musculoskeletal demands. These results provide support for the argument that the optimal location of visual targets is at least 15 below horizontal eye level. Actual or potential applications of this work include the layout of computer workstations and the viewing of displays from a seated posture.
Resumo:
The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.
Resumo:
The purpose of the present study was to examine the benefits of providing audible speech to listeners with sensorineural hearing loss when the speech is presented in a background noise. Previous studies have shown that when listeners have a severe hearing loss in the higher frequencies, providing audible speech (in a quiet background) to these higher frequencies usually results in no improvement in speech recognition. In the present experiments, speech was presented in a background of multitalker babble to listeners with various severities of hearing loss. The signal was low-pass filtered at numerous cutoff frequencies and speech recognition was measured as additional high-frequency speech information was provided to the hearing-impaired listeners. It was found in all cases, regardless of hearing loss or frequency range, that providing audible speech resulted in an increase in recognition score. The change in recognition as the cutoff frequency was increased, along with the amount of audible speech information in each condition (articulation index), was used to calculate the "efficiency" of providing audible speech. Efficiencies were positive for all degrees of hearing loss. However, the gains in recognition were small, and the maximum score obtained by an listener was low, due to the noise background. An analysis of error patterns showed that due to the limited speech audibility in a noise background, even severely impaired listeners used additional speech audibility in the high frequencies to improve their perception of the "easier" features of speech including voicing
Resumo:
We analyze the quantum dynamics of radiation propagating in a single-mode optical fiber with dispersion, nonlinearity, and Raman coupling to thermal phonons. We start from a fundamental Hamiltonian that includes the principal known nonlinear effects and quantum-noise sources, including linear gain and loss. Both Markovian and frequency-dependent, non-Markovian reservoirs are treated. This treatment allows quantum Langevin equations, which have a classical form except for additional quantum-noise terms, to be calculated. In practical calculations, it is more useful to transform to Wigner or 1P quasi-probability operator representations. These transformations result in stochastic equations that can be analyzed by use of perturbation theory or exact numerical techniques. The results have applications to fiber-optics communications, networking, and sensor technology.
Resumo:
This review reflects the state of the art in study of contact and dynamic phenomena occurring in cold roll forming. The importance of taking these phenomena into account is determined by significant machine time and tooling costs spent on worn out forming rolls replacement and equipment adjustment in cold roll forming. Predictive modelling of the tool wear caused by contact and dynamic phenomena can reduce the production losses in this technological process.
Resumo:
Extracting human postural information from video sequences has proved a difficult research question. The most successful approaches to date have been based on particle filtering, whereby the underlying probability distribution is approximated by a set of particles. The shape of the underlying observational probability distribution plays a significant role in determining the success, both accuracy and efficiency, of any visual tracker. In this paper we compare approaches used by other authors and present a cost path approach which is commonly used in image segmentation problems, however is currently not widely used in tracking applications.