15 resultados para dynamic performance appraisal
em University of Queensland eSpace - Australia
Resumo:
Four hundred and thirty-seven employees from four Hong Kong organizations completed the Traditional Chinese versions of the Fifteen Factor Personality Questionnaire Plus (15FQ+) and the Cross-Cultural Personality Assessment Inventory (CPAI-2) (indigenous scales) and provided objective and memory-based recent performance appraisal scores. A number of significant bivariate correlations were found between personality and performance scores. Hierarchical multiple regression analyses revealed that a number of the scales from the 15FQ+ contributed to significantly predicting four of the performance competency dimensions, but that the CPAI-2 indigenous scales contributed no incremental validity in performance prediction over and above the 15FQ+. Results are discussed in the light of previous research and a call made for continued research to further develop and increase the reliability of the Chinese instruments used in the study and to enable generalization of the findings with confidence.
Resumo:
Research on group criticism has demonstrated that criticisms are received less defensively when made by an ingroup member than when made by an outsider (the intergroup sensitivity effect). Three experiments tested the extent to which this effect is driven by social identity concerns or by judgments of how experienced the source of the criticism is. In Experiments I and 2, Australians who criticized Australia (ingroup critics) were met with less defensiveness than were foreigners who criticized Australia (outgroup critics), regardless of the amount of experience the foreigner had with Australia. Furthermore, the effects of speaker type on evaluations were mediated by perceptions of the extent to which the criticisms were intended to be constructive but not by perceptions of experience. Finally, Experiment 3 indicated that although experience does not help outgroup critics, a lack of experience can hurt ingroup critics. Recommendations are provided as to how people can reduce defensiveness when making group criticisms.
Resumo:
This research used resource allocation theory to generate predictions regarding dynamic relationships between self-efficacy and task performance from 2 levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at repeated intervals. The authors used multilevel analysis to demonstrate differential and dynamic effects. As predicted, task-specific self-efficacy was negatively associated with task performance at the within-person level. On the other hand, average levels of task-specific self-efficacy were positively related to performance at the between-persons level and mediated the effect of general self-efficacy. The key findings from this research relate to dynamic effects - these results show that self-efficacy effects can change over time, but it depends on the level of analysis and specificity at which self-efficacy is conceptualized. These novel findings emphasize the importance of conceptualizing self-efficacy within a multilevel and multispecificity framework and make a significant contribution to understanding the way this construct relates to task performance.
Resumo:
In this experiment, we examined the extent to which the spatiotemporal reorganization of muscle synergies mediates skill acquisition on a two degree-of-freedom (df) target-acquisition task. Eight participants completed five practice sessions on consecutive days. During each session they practiced movements to eight target positions presented by a visual display. The movements required combinations of flexion/extension and pronation/supination of the elbow joint complex. During practice sessions, eight targets displaced 5.4 cm from the start position ( representing joint excursions of 54) were presented 16 times. During pre- and posttests, participants acquired the targets at two distances (3.6 cm [36 degrees] and 7.2 cm [72 degrees]). EMG data were recorded from eight muscles contributing to the movements during the pre- and posttests. Most targets were acquired more rapidly after the practice period. Performance improvements were, in most target directions, accompanied by increases in the smoothness of the movement trajectories. When target acquisition required movement in both dfs, there were also practice-related decreases in the extent to which the trajectories deviated from a direct path to the target. The contribution of monofunctional muscles ( those producing torque in a single df) increased with practice during movements in which they acted as agonists. The activity in bifunctional muscles ( those contributing torque in both dfs) remained at pretest levels in most movements. The results suggest that performance gains were mediated primarily by changes in the spatial organization of muscles synergies. These changes were expressed most prominently in terms of the magnitude of activation of the monofunctional muscles.
Resumo:
Background: The age-related loss of muscle power in older adults is greater than that of muscle strength and is associated with a decline in physical performance. Objective: To investigate the effects of a short-term high-velocity varied resistance training programme on physical performance in healthy community-dwelling adults aged 60-80 years. Methods: Subjects undertook exercise (EX; n = 15) or maintained customary activity (controls, CON; n = 10) for 8 weeks. The EX group trained 2 days/week using machine weights for three sets of eight repetitions at 35, 55, and 75% of their one-repetition maximum (the maximal weight that an individual can lift once with acceptable form) for seven upper- and lower-body exercises using explosive concentric movements. Results: Fourteen EX and 10 CON subjects completed the study. Dynamic muscle strength significantly increased (p = 0.001) in the EX group for all exercises (from 21.4 +/- 9.6 to 82.0 +/- 59.2%, mean +/- SD) following training, as did knee extension power (p < 0.01). Significant improvement occurred for the EX group in the floor rise to standing (10.4 &PLUSMN; 11.5%, p = 0.004), usual 6-metre walk (6.6 &PLUSMN; 8.2%, p = 0.010), repeated chair rise (10.4 &PLUSMN; 15.6%, p = 0.013), and lift and reach (25.6 &PLUSMN; 12.1%, p = 0.002) performance tasks but not in the CON group. Conclusions: Progressive resistance training that incorporates rapid rate-of-force development movements may be safely undertaken in healthy older adults and results in significant gains in muscle strength, muscle power, and physical performance. Such improvements could prolong functional independence and improve the quality of life. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Mounting concerns regarding the environmental impact of herbicides has meant a growing requirement for accurate, timely information regarding herbicide residue contamination of, in particular, aquatic systems. Conventional methods of detection remain limited in terms of practicality due to high costs of operation and the specialised information that analysis provides. A new phytotoxicity bioassay was trialled for the detection of herbicide residues in filter-purified (Milli-Q) as well as natural waters. The performance of the system, which combines solid-phase extraction (SPE) with the ToxY-PAM dual-channel yield analyser (Heinz Walz GmbH), was tested alongside the traditional method of liquid chromatography-mass spectrometry (LC-MS). The assay methodology was found to be highly sensitive (LOD 0.1 ng L-1 diuron) with good reproducibility. The study showed that the assay protocol is time effective and can be employed for the aquatic screening of herbicide residues in purified as well as natural waters.
Resumo:
The notorious "dimensionality curse" is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well-known approach to overcome degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them are challenging tasks. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has four notable features compared to existing methods. First, it discovers elliptical clusters for more effective dimensionality reduction by using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B+-tree. Third, our technique is highly scalable in terms of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An extensive performance study was conducted using both real and synthetic datasets, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently. Copyright Springer-Verlag 2005
Resumo:
This paper proposes a three-step method of evaluating high performance coaches involving feedback from the athletes. First, data are collected using an instrument such as the Coaching Behavior Scale for Sport (CBS-S: Cote, Yardley, Hay, Sedgwick, & Baker, 1999). Second, a summary report is prepared with descriptive information regarding the frequency of behaviors demonstrated by the coach that can be compared to previous results or to a criterion measure. The third step involves appropriate personnel reviewing the report and subsequently providing guidance for individual coach development. This three-step appraisal method provides useful evaluative feedback to coaches and has been used in several sport programs in Canada, the United States, and Australia.
Resumo:
Bang-bang phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed a process can make a working flip-flop. For these reasons designers are employing them in the design of very high speed Clock Data Recovery (CDR) architectures. The major drawback of this class of PLL is the inherent jitter due to quantized phase and frequency corrections. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. This paper presents a novel PLL design that dynamically scales its gain in order to achieve fast lock times while improving fitter performance in lock. Under certain circumstances the design also demonstrates improved capture range. This paper also analyses the behaviour of a bang-bang type PLL when far from lock, and demonstrates that the pull-in range is proportional to the square root of the PLL loop gain.
Resumo:
This research adopts a resource allocation theoretical framework to generate predictions regarding the relationship between self-efficacy and task performance from two levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at repeated intervals. The authors used multilevel analysis to demonstrate dynamic main effects, dynamic mediation and dynamic moderation. As predicted, the positive effects of overall task specific self-efficacy and general self-efficacy on task performance strengthened throughout practice. In line with these dynamic main effects, the effect of general self-efficacy was mediated by overall task specific self-efficacy; however this pattern emerged over time. Finally, changes in task specific self-efficacy were negatively associated with changes in performance at the within-person level; however this effect only emerged towards the end of practice for individuals with high levels of overall task specific self-efficacy. These novel findings emphasise the importance of conceptualising self-efficacy within a multi-level and multi-specificity framework and make a significant contribution to understanding the way this construct relates to task performance.
Resumo:
Due to the growing popularity of goal setting programs within organisations, an understanding of the mechanisms underlying the dynamic regulation of performance is paramount (Williams, Donovan, & Dodge, 2000). Goals serve as standards or referents by which behaviour is directed and evaluated. Whilst their importance is well established in the existing literature (e.g. Locke & Latham, 1990), more recent research has highlighted the potential importance of goal-performance discrepancies. Moreover, the relationship between goal-performance discrepancies and outcomes such as self-efficacy and personal goals appears to vary between people (Schmidt & Chambers, 2002). Of interest in the current study was how these relationships were impacted by goal orientation. Ninety-seven participants completed 30 two-minute trials of an Air Traffic Control task. Task specific goal orientation was measured prior to commencement of the task and measures of self-efficacy and personal task goals were taken at each trial to assess the within-person relationships between goal performance discrepancies and each of these dependant variables, as well as the moderating effects of goal orientations on these relationships. Analysis supported the existence of a positive relationship between goal-performance discrepancies and outcome variables, with performance-approach and –avoidance orientations significantly moderating these associations. Implications and future directions are discussed.
Resumo:
This paper presents an approach for optimal design of a fully regenerative dynamic dynamometer using genetic algorithms. The proposed dynamometer system includes an energy storage mechanism to adaptively absorb the energy variations following the dynamometer transients. This allows the minimum power electronics requirement at the mains power supply grid to compensate for the losses. The overall dynamometer system is a dynamic complex system and design of the system is a multi-objective problem, which requires advanced optimisation techniques such as genetic algorithms. The case study of designing and simulation of the dynamometer system indicates that the genetic algorithm based approach is able to locate a best available solution in view of system performance and computational costs.
Resumo:
Achievement goal orientation represents an individual's general approach to an achievement situation, and has important implications for how individuals react to novel, challenging tasks. However, theorists such as Yeo and Neal (2004) have suggested that the effects of goal orientation may emerge over time. Bell and Kozlowski (2002) have further argued that these effects may be moderated by individual ability. The current study tested the dynamic effects of a new 2x2 model of goal orientation (mastery/performance x approach/avoidance) on performance on a simulated air traffic control (ATC) task, as moderated by dynamic spatial ability. One hundred and one first-year participants completed a self-report goal orientation measure and computerbased dynamic spatial ability test and performed 30 trials of an ATC task. Hypotheses were tested using a two-level hierarchical linear model. Mastery-approach orientation was positively related to task performance, although no interaction with ability was observed. Performance-avoidance orientation was negatively related to task performance; this association was weaker at high levels of ability. Theoretical and practical implications will be discussed.