5 resultados para dynamic environment
em University of Queensland eSpace - Australia
Resumo:
The Australian energy market is in the final stages of deregulation. These changes have created a dynamic environment which is highly volatile and competitive with respect to both demand and price. Our current research seeks to visualise aspects of the National Energy Market with a view to developing techniques which may be useful in identifying significant characteristics and/or drivers of these characteristics. In order to capture the complexity of the problem we explore a suite of different visualisation techniques, which, when combined into a unified package, highlight aspects of the problem. The particular problem visualised here is "Does the date exhibit characteristics which suggest that the time of day, day of the week, or the season, aflect the variation in demand and/or price?" © Austral. Mathematical Soc. 2005.
Resumo:
This paper describes an application of decoupled probabilistic world modeling to achieve team planning. The research is based on the principle that tbe action selection mechanism of a member in a robot team cm select am effective action if a global world model is available to all team members. In the real world, the sensors are imprecise, and are individual to each robot, hence providing each robot a partial and unique view about the environment. We address this problem by creating a probabilistic global view on each agent by combining the perceptual information from each robot. This probsbilistie view forms the basis for selecting actions to achieve the team goal in a dynamic environment. Experiments have been carried ont to investigate the effectiveness of this principle using custom-built robots for real world performance, in addition, to extensive simulation results. The results show an improvement in team effectiveness when using probabilistic world modeling based on perception sharing for team planning.
Resumo:
Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.
Resumo:
This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup)
Resumo:
Music plays an enormous role in today's computer games; it serves to elicit emotion, generate interest and convey important information. Traditional gaming music is fixed at the event level, where tracks loop until a state change is triggered. This behaviour however does not reflect musically the in-game state between these events. We propose a dynamic music environment, where music tracks adjust in real-time to the emotion of the in-game state. We are looking to improve the affective response to symbolic music through the modification of structural and performative characteristics through the application of rule-based techniques. In this paper we undertake a multidiscipline approach, and present a series of primary music-emotion structural rules for implementation. The validity of these rules was tested in small study involving eleven participants, each listening to six permutations from two musical works. Preliminary results indicate that the environment was generally successful in influencing the emotion of the musical works for three of the intended four directions (happier, sadder & content/dreamier). Our secondary aim of establishing that the use of music-emotion rules, sourced predominantly from Western classical music, could be applied with comparable results to modern computer gaming music was also largely successfully.