7 resultados para disgenesia gonadal

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the identification of SRY as the testis-determining gene in mammals, the genetic interactions controlling the earliest steps of male sex determination remain poorly understood. In particular, the molecular lesions underlying a high proportion of human XY gonadal dysgenesis, XX maleness and XX true hermaphroditism remain undiscovered. A number of screens have identified candidate genes whose expression is modulated during testis or ovary differentiation in mice, but these screens have used whole gonads, consisting of multiple cell types, or stages of gonadal development well beyond the time of sex determination. We describe here a novel reporter mouse line that expresses enhanced green fluorescent protein under the control of an Sf1 promoter fragment, marking Sertoli and granulosa cell precursors during the critical period of sex determination. These cells were purified from gonads of male and female transgenic embryos at 10.5 dpc (shortly after Sry transcription is activated) and 11.5 dpc (when Sox9 transcription begins), and their transcriptomes analysed using Affymetrix genome arrays. We identified 266 genes, including Dhh, Fgf9 and Ptgds, that were upregulated and 50 genes that were downregulated in 11.5 dpc male somatic gonad cells only, and 242 genes, including Fst, that were upregulated in 11.5 dpc female somatic gonad cells only. The majority of these genes are novel genes that lack identifiable homology, and several human orthologues were found to map to chromosomal loci implicated in disorders of sexual development. These genes represent an important resource with which to piece together the earliest steps of sex determination and gonad development, and provide new candidates for mutation searching in human sexual dysgenesis syndromes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To review the common clinical presentations, investigations and final diagnosis of children presenting with genital ambiguity. Methodology: Retrospective search of the Royal Children's Hospital, Brisbane, Australia, medical records and personal medical database of one of the authors (MJT) between 1982 and 1999. Results: Fifty-one children aged 0.1-;14 (mean 3.9) years were identified. Twenty-two cases had a 46XX karyotype, and commonly presented with an enlarged phallus (77.2%), urogenital sinus (63.6%) and labioscrotal fold(s) (40.9%). Congenital adrenal hyperplasia (CAH) was the most common final diagnosis (72.7%) . Twenty-nine cases of genital ambiguity had a 46XY karyotype and commonly presented with palpable gonad(s) (75.8%), undescended testes (51.7%), penoscrotal hypospadias (51.7%) and a small phallus (41.3%). Androgen insensitivity and gonadal dysgenesis were the commonest final diagnosis both occurring at a frequency of 17.2%. Conclusions: The results emphasize the importance of CAH as the most common diagnosis in 46XX cases presenting with ambiguous genitalia. Those with 46XY had a wider range of diagnoses. Despite thorough investigation, 23.5% had no definite final diagnosis made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sry, a gene from the Y chromosome, is known to initiate testis formation and subsequent male differentiation in mammals. A related gene, Sox9, also plays a critical role in testis determination, possibly in all vertebrates. A number of models have been presented regarding the molecular modes of action of these two genes. However, details regarding their regulation, regulatory target genes, and interacting protein factors and co-factors have not been established with any certainty. In this review, we examine new evidence and re-examine existing evidence bearing on these issues, in an effort to build up an integrative model of the network of gene activity centred around Sry and Sox9. J. Exp. Zool. 290:463-474, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The decision of the embryonic gonad to differentiate as either a testis or an ovary is a critical step in vertebrate development. The molecular basis of this decision has been the focus of much study, particularly over the past decade. Here we contrast the knowledge of early gonadal development and the switch to testis differentiation with the lack of molecular understanding of ovarian development at early stages. We review current knowledge regarding mechanisms of ovarian morphogenesis and propose a model for the hierarchical control of development of the fetal ovary, incorporating the few genes already known to be important and several signals or factors that are hypothesised to exist in the early ovary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cDNAs coding for the brain GnRHs (AY373449-51), pituitary GH, SL and PRL, and liver IGFs (AY427954-5) were isolated. Partial cDNA sequences of the brain (Cyp19b) and gonadal (Cyp19a) aromatases have also been obtained. These tools would be utilized to study the endocrine regulation of puberty in the grey mullet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, strategies for gene identification based on differential gene expression have become increasingly popular, due in part to the development of microarray technology. These strategies are particularly well suited to the identification of genes involved in sex determination and gonadal development, which unlike the development of other organ systems, proceeds along two very different alternative courses, depending on the sex of the embryo. We have used a high-throughput, array-based expression screen to identify several genes expressed sex-specifically in developing mouse gonads. One of these, vanin 1, appears to play a role in mediating migration of mesonephric cells into the male genital ridge. Progress in characterizing other genes arising from the screen is discussed.