16 resultados para dimethyl disulfide

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (LeNguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by H-1 NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides; poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha-defensin antimicrobial peptide family is defined by a unique tridisulfide array. To test whether this invariant structural feature determines alpha-defensin bactericidal activity, mouse cryptdin-4 (Crp4) tertiary structure was disrupted by pairs of site-directed Ala for Cys substitutions. In a series of Crp4 disulfide variants whose cysteine connectivities were confirmed using NMR spectroscopy and mass spectrometry, mutagenesis did not induce loss of function. To the contrary, the in vitro bactericidal activities of several Crp4 disulfide variants were equivalent to or greater than those of native Crp4. Mouse Paneth cell alpha-defensins require the proteolytic activation of precursors by matrix metalloproteinase-7 (MMP-7), prompting an analysis of the relative sensitivities of native and mutant Crp4 and proCrp4 molecules to degradation by MMP-7. Although native Crp4 and the alpha-defensin moiety of proCrp4 resisted proteolysis completely, all disulfide variants were degraded extensively by MMP-7. Crp4 bactericidal activity was eliminated by MMP-7 cleavage. Thus, rather than determining alpha-defensin bactericidal activity, the Crp4 disulfide arrangement confers essential protection from degradation by this critical activating proteinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dsb proteins control the formation and rearrangement of disulfide bonds during the folding of secreted and membrane proteins in bacteria. DsbG, a member of this family, has disulfide bond isomerase and chaperone activity. Here, we present two crystal structures of DsbG at 1.7- and 2.0-Angstrom resolution that are meant to represent the reduced and oxidized forms, respectively. The oxidized structure, however, reveals a mixture of both redox forms, suggesting that oxidized DsbG is less stable than the reduced form. This trait would contribute to DsbG isomerase activity, which requires that the active-site Cys residues are kept reduced, regardless of the highly oxidative environment of the periplasm. We propose that a Thr residue that is conserved in the cis-Pro loop of DsbG and DsbC but not found in other Dsb proteins could play a role in this process. Also, the structure of DsbG reveals an unanticipated and surprising feature that may help define its specific role in oxidative protein folding. Thus, the dimensions and surface features of DsbG show a very large and charged binding surface that is consistent with interaction with globular protein substrates having charged surfaces. This finding suggests that, rather than catalyzing disulfide rearrangement in unfolded substrates, DsbG may preferentially act later in the folding process to catalyze disulfide rearrangement in folded or partially folded proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study using solid phase peptide synthesis has been undertaken to examine the role of the disulfide bonds in the structure and function of mEGF. A combination of one, two and three native disulfide pair analogues of an active truncated (4-48) form of mEGF have been synthesised by replacing specific cysteine residues with isosteric alpha-amino-n-butyric acid (Abu). Oxidation of the peptides was performed using either conventional aerobic oxidation at basic pH, in DMSO under acidic conditions or via selective disulfide formation using orthogonal protection of the cysteine pairs. The contribution of individual, or pairs of, disulfide bonds to EGF structure was evaluated by CD and H-1-NMR spectroscopy. The mitogenic activity of each analogue was determined using Balb/c 3T3 mouse fibroblasts. As we have reported previously (Barnham et al. 1998), the disulfide bond between residues 6 and 20 can be removed with significant retention of biological activity (EC50 20-50 nM). The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. We now show that removal of any other disulfide bond, either singly or in pairs, results in a major disruption of the tertiary structure, and a large loss of activity (EC50>900 nM). Remarkably, the linear analogue appears to have greater activity (EC50 580 nM) than most one and two disulfide bond analogues although it does not have a definable tertiary structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of human phenylethanolamine N-methyltransferase (hPNMT) reveals a disulfide- linked dimer, despite the presence of reducing agent in the crystallisation conditions. By removing the reducing agent, hPNMT crystals grow more rapidly and at lower protein concentrations. However, it was unclear whether the disulfide bonds are only present in the crystal form or whether these affect enzyme activity. The solution oligomeric state of hPNMT was investigated using biochemical techniques and activity assays. We found that in the absence of reducing agent, hPNMT forms dimers in solution. Furthermore, the solution dimer of hPNMT incorporates disulfide bonds, since this form is sensitive to reducing agent. The C48A and C139A mutants of hPNMT, which are incapable of forming the disulfide bond observed in the crystal structure, have a decreased propensity to form dimer in solution. Those dimers that do form are also sensitive to reducing agent. Further, the C48A/C139A double mutant shows only monomeric behaviour. Both dimeric and monomeric hPNMT, as well as mutants have wildtype enzyme activity. These results show that a variety of disulfides, including those observed in the crystal structure, can form in solution. In addition, disulfide-linked dimers are as active as the monomeric enzyme indicating that the crystal structure of the protein is a valid target for inhibitor design. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SFTI-1 is a novel 14 amino acid peptide comprised of a circular backbone constrained by three proline residues, a hydrogen-bond network, and a single disulfide bond. It is the smallest and most potent known Bowman-Birk trypsin inhibitor and the only one with a cyclic peptidic backbone. The solution structure of [ABA(3,11)]SFTI-1, a disulfide-deficient analogue of SFTI-1, has been determined by H-1 NMR spectroscopy. The lowest energy structures of native SFTI-1 and [ABA(3,11)]SFTI-1 are similar and superimpose with a root-mean-square deviation over the backbone and heavy atoms of 0.26 +/- 0.09 and 1.10 +/- 0.22 Angstrom, respectively. The disulfide bridge in SFTI-1 was found to be a minor determinant for the overall structure, but its removal resulted in a slightly weakened hydrogen-bonding network. To further investigate the role of the disulfide bridge, NMR chemical shifts for the backbone H-alpha protons of two disulfide-deficient linear analogues of SFTI-1, [ABA(3,11)]SFTI-1[6,5] and [ABA(3,11)]SFTI-1[1,14] were measured. These correspond to analogues of the cleavage product of SFTI-1 and a putative biosynthetic precursor, respectively. In contrast with the cyclic peptide, it was found that the disulfide bridge is essential for maintaining the structure of these open-chain analogues. Overall, the hydrogen-bond network appears to be a crucial determinant of the structure of SFTI-1 analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality data about protein structures and their gene sequences are essential to the understanding of the relationship between protein folding and protein coding sequences. Firstly we constructed the EcoPDB database, which is a high-quality database of Escherichia coli genes and their corresponding PDB structures. Based on EcoPDB, we presented a novel approach based on information theory to investigate the correlation between cysteine synonymous codon usages and local amino acids flanking cysteines, the correlation between cysteine synonymous codon usages and synonymous codon usages of local amino acids flanking cysteines, as well as the correlation between cysteine synonymous codon usages and the disulfide bonding states of cysteines in the E. coli genome. The results indicate that the nearest neighboring residues and their synonymous codons of the C-terminus have the greatest influence on the usages of the synonymous codons of cysteines and the usage of the synonymous codons has a specific correlation with the disulfide bond formation of cysteines in proteins. The correlations may result from the regulation mechanism of protein structures at gene sequence level and reflect the biological function restriction that cysteines pair to form disulfide bonds. The results may also be helpful in identifying residues that are important for synonymous codon selection of cysteines to introduce disulfide bridges in protein engineering and molecular biology. The approach presented in this paper can also be utilized as a complementary computational method and be applicable to analyse the synonymous codon usages in other model organisms. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys(1)-Cys(18) disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular functions hinge on the ability of proteins to adopt their correct folds, and misfolded proteins can lead to disease. Here, we focus on the proteins that catalyze disulfide bond formation, a step in the oxidative folding pathway that takes place in specialized cellular compartments. In the endoplasmic reticulum of eukaryotes, disulfide formation is catalyzed by protein disulfide isomerase (PDI); by contrast, prokaryotes produce a family of disulfide bond (Dsb) proteins, which together achieve an equivalent outcome in the bacterial periplasm. The recent crystal structure of yeast PDI has increased our understanding of the function and mechanism of PDI. Comparison of the structure of yeast PDI with those of bacterial DsbC and DsbG reveals some similarities but also striking differences that suggest directions for future research aimed at unraveling the catalytic mechanism of disulfide bond formation in the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L-1 (5,7-dimethyl-3-(2',3',5'-tri-O-benzoyl-beta-D-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L-2 (5,7-dimethyl-3-beta-D-ribofuranosyl-s-triazolo [4,3-a]pyrimidine) and L-3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L-1)](NO3)(2), (Pd(bpy)(L-1)](NO3)(2), cis-Pd(L-3)(2)Cl-2, [Pd-2(L-3)(2)Cl-4]center dot H2O, cis-Pd(L-2)(2)Cl-2 and [Pt-3(L-1)(2)Cl-6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd-2(L-3)(2)Cl-4]center dot H2O complex was established by Xray crystallography. The two L-3 ligands are found in a head to tail orientation, with a (PdPd)-Pd-... distance of 3.1254(17) angstrom.L-1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L-2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L-2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By carefully controlling the concentration of alpha,omega-thiol polystyrene in solution, we achieved formation of unique monocyclic polystyrene chains (i.e., polymer chains with only one disulfide linkage). The presence of cyclic polystyrene was confirmed by its lower than expected molecular weight due to a lower hydrodynamic volume and loss of thiol groups as detected by using Ellman's reagent. The alpha,omega-thiol polystyrene was synthesized by polymerizing styrene in the presence of a difunctional RAFT agent and subsequent conversion of the dithioester end groups to thiols via the addition of hexylamine. Oxidation gave either monocyclic polymer chains (i.e., with only one disulfide linkage) or linear multiblock polymers with many disulfide linkages depending on the concentration of polymer used with greater chance of cyclization in more dilute solutions. At high polymer concentrations, linear multiblock polymers were formed. To control the MWD of these linear multiblocks, monofunctional X-PSTY (X = PhCH2C(S)-S-) was added. It was found that the greatest ratio of X-PSTY to X-PSTY-X resulted in a low M-n and PDI. We have shown that we can control both the structure and MWD using this chemistry, but more importantly such disulfide linkages can be readily reduced back to the starting polystyrene with thiol end groups, which has potential use for a recyclable polymer material.