9 resultados para differential display-PCR

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To identify differentially expressed genes in synovial fibroblasts and examine the effect on gene expression of exposure to TNF-alpha and IL-1beta. Methods. Restriction fragment differential display was used to isolate genes using degenerate primers complementary to the lysophosphatidic acid acyl transferase gene family. Differential gene expression was confirmed by reverse transcription-polymerase chain reaction and immunohistochemistry using a variety of synovial fibroblasts, including cells from patients with osteoarthritis and self-limiting parvovirus arthritis. Results. Irrespective of disease process, synovial fibroblasts constitutively produced higher levels of IL-6 and monocyte chemoattractant protein 1 (MCP-1) (CCL2) than skin fibroblasts. Seven genes were differentially expressed in synovial fibroblasts compared with skin fibroblasts. Of these genes, four [tissue factor pathway inhibitor 2 (TFPI2), growth regulatory oncogene beta (GRObeta), manganese superoxide dismutase (MnSOD) and granulocyte chemotactic protein 2 (GCP-2)] were all found to be constitutively overexpressed in synoviocytes derived from patients with osteoarthritis. These four genes were only weakly expressed in other synovial fibroblasts (rheumatoid and self-limiting parvovirus infection). However, expression in all types of fibroblasts was increased after stimulation with TNF-alpha and IL-1beta. Three other genes (aggrecan, biglycan and caldesmon) were expressed at higher levels in all types of synovial fibroblasts compared with skin fibroblasts even after stimulation with TNF-alpha and IL-1. Conclusions. Seven genes have been identified with differential expression patterns in terms of disease process (osteoarthritis vs rheumatoid arthritis), state of activation (resting vs cytokine activation) and anatomical location (synovium vs skin). Four of these genes, TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6), were selectively overexpressed in osteoarthritis fibroblasts rather than rheumatoid fibroblasts. While these differences may represent differential behaviour of synovial fibroblasts in in vitro culture, these observations suggest that TFPI2, GRObeta (CXCL2), MnSOD and GCP-2 (CXCL6) may represent new targets for treatments specifically tailored to osteoarthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical midline glia are critical to the formation of the corpus callosum during development. The glial wedge is a Population of midline glia that is located at the corticoseptal boundary and expresses repulsive/growth-inhibitory molecules that guide callosal axons as they cross the midline. The glial wedge are the first cells within the cortex to express GFAP and thus may express molecules specific for glial maturation. The corticoseptal boundary is a genetically defined boundary between the cingulate cortex (dorsal telencephalon) and the septum (ventral telencephalon). The correct dorso-ventral position of this boundary is vital to the formation of both the glial wedge and the corpus callosum. Our aim was to identify genes expressed specifically within the glial wedge that might be involved in either glial differentiation, formation of the corticoseptal boundary or development of the corpus callosum. To identify such genes we have performed a differential display PCR screen comparing RNA isolated from the glial wedge with RNA isolated from control tissues such as the neocortex and septum, of embryonic day 17 mouse brains. Using 200 different combinations of primers, we identified and cloned 67 distinct gene fragments. In situ hybridization analysis confirmed the differential expression of many of the genes, and showed that clones G24F3, G39F8 and transcription factor LZIP have specific expression patterns in the telencephalon of embryonic and postnatal brains. An RNase Protection Assay (RPA) revealed that the expression of G39F8, G24173 and LZIP increase markedly in the telencephalon at E16 and continue to be expressed until at least PO, during the period when the corpus callosum is forming. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alcohol dependence may result from neuroadaptation involving alteration of gene expression after long-term alcohol exposure. The systematic study of gene expression profiles of the human alcoholic brain was initiated using the method of polymerase chain reaction (PCR)-differential display and was followed by DNA microarray. To date, more than 100 alcohol-responsive genes have been identified from the frontal cortex, motor cortex and nucleus accumbens of the human brain. These genes have a wide range of functions in the brain and indicate diverse actions of alcohol on neuronal function. This review discusses the current information on the genetic basis of alcoholism and the induction and characterization of these alcohol-responsive genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kallikrein 6 (hK6, also known as protease M/zyme/neurosin) is a member of the human kallikrein gene family. We have previously cloned the cDNA for this gene by differential display and shown the overexpression of the mRNA in breast and ovarian primary tumour tissues and cell lines. To thoroughly characterise the expression of this kallikrein in ovarian cancer, we have developed a novel monoclonal antibody specific to hK6 and employed it in immunohistochemistry with a wide range of ovarian tumour samples. The expression was found elevated in 67 of 80 cases of ovarian tumour samples and there was a significant difference in the expression levels between normal and benign ovarian tissues and the borderline and invasive tumours (P<0.001). There was no difference of expression level between different subtypes of tumours. More significantly, high level of kallikrein 6 expression was found in many early-stage and low-grade tumours, and elevated hK6 proteins were found in benign epithelia coexisting with borderline and invasive tissues, suggesting that overexpression of hK6 is an early phenomenon in the development of ovarian cancer. Quantitative real-time reverse transcription-polymerase chain reactions also showed elevated kallikrein 6 mRNA expression in ovarian tumours. Genomic Southern analysis of 19 ovarian tumour samples suggested that gene amplification is one mechanism for the overexpression of hK6 in ovarian cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The non-geniculate crustose coralline alga (CCA) Mastophora pacifica can induce the metamorphosis of competent Haliotis asinina (Vetigastropoda) larvae. The ability to respond to this natural cue varies considerably with larval age, with a higher proportion of older larvae (e.g. 90 h) able to metamorphose in response to M. pacifica than younger larvae (e.g. 66 h). Here we document the variation in time to acquisition of competence within a larval age class. For example, after 18 h of exposure to M. pacifica, approximately 15 and 36% of 84 and 90-h-old H. asinina larvae had initiated metamorphosis, respectively. This age-dependent response to M. pacifica is also observed when different aged larvae are exposed to CCA for varying periods. A higher proportion of older larvae require shorter periods of exposure to CCA than younger larvae in order to initiate metamorphosis. In this experiment, as in the previous, a small proportion of young larvae were able to respond to brief periods of CCA exposure, suggesting that they had developed the same state of competency as the majority of their older counterparts. Comparisons of the proportions of larvae undergoing metamorphosis between families reveals that parentage also has a significant (P < 0.05) affect on whether an individual will initiate metamorphosis at a given age. These familial differences are more pronounced when younger, largely pre-competent larvae (i.e. 66 h old) are exposed to M. pacifica, with proportions of larvae undergoing metamorphosis differing by as much as 10 fold between families. As these data suggest that variation in the rate of development of the competent state has a genetic basis, and as a first step towards identifying the molecular basis to this variation, we have identified numerous genes that are differentially expressed later in larval development using a differential display approach. Spatial expression analysis of these genes suggests that they may be directly involved in the acquisition of competence, or may play a functional role in the postlarva following metamorphosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mapping and sequencing of the human genome has generated a large resource for answering questions about human disease. This achievement is akin in scientific importance to developing the periodic table of elements. Plastic surgery has always been at the frontier medical research. This resource will help us to improve our understanding on the many unknown physiological and pathogical conditions we deal with daily, such as wound heating keloid scar formation, Dupuytren's disease, rheumatoid arthritis, vascular malformation and carcinogenesis. We are primed in obtaining both disease and normal tissues to use this resource and applying it to clinical use. This review is about the human genome, the basis of gene expression profiling and how it will affect our clinical and research practices in the future and for those embarking on the use of this new technology as a research tool, we provide a brief insight on its limitations and pitfalls. (C) 2006 The British Association of Plastic Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that the expression of NMDA receptor NR1 subunit mRNA splice variants in Alzheimer's disease (AD) brain varies according to regional susceptibility to pathological damage. Here we investigated the expression of the modulatory NR2 subunits of the NMDA receptor using quantitative RT-PCR to assay all NR2 isoforms. Significantly lower expression of NR2A and NR2B transcripts was found in susceptible regions of AD brain, whereas expression of NR2C and NR2D transcripts did not differ from that in controls. Western blot analysis confirmed a lower expression of the NR2A and NR2B isoforms at the protein level. The results suggest that NR2 subunit composition may modulate NMDA receptor-mediated excitotoxicity. NMDA receptor dysfunction might give rise to the regionally selective pattern of neuronal loss that is characteristic of AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have compared the expression pattern of NMDA receptor subunits (NR1 and NR2A-D)and NRI splice variants (NR1-1a/1b,-2a/2b,-3a/3b,4a/4b) in motor neuron populations from adult Wistar rats that are vulnerable (hypoglossal, XII) or resistant (oculomotor, III) to death in amyotrophic lateral sclerosis (ALS). The major finding was higher levels of expression of the NR2B subunit in the hypoglossal nucleus. Quantitative real-time PCR showed that NR1 was expressed at a greater level than any of the NR2 subunits (> 15 fold greater, P