14 resultados para diamondback terrapin
em University of Queensland eSpace - Australia
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha(-1)) provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20similar to40 L ha(-1)). The PB-20 provided better spray coverage on the upper surface of middle leaves and both surfaces of outer leaves when compared with the Selecta 12V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha(-1) for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers.
Resumo:
The relative potential of the pathogenic fungi Beauveria bassiana and Zoophthora radicans for use as autodisseminated biological control agents of the diamondback moth (Plutella xylostella) was compared. The LC50 of B. bassiana conidia to third instar larvae was 499 conidia/mm(2) of leaf surface and individual cadavers of mycosed fourth instar larvae yielded a mean of 67.5 X 10(6) (+/- 7.5 x 10(6)) conidia. All concentrations of B. bassiana tested in inoculation chambers (0.24, 2.4, and 6.2 mug/mm(2)) induced 100% mortality in adult male moths within 7 days. The times to death and sporulation were concentration and exposure duration dependent. A standard procedure for inoculating male moths resulted in > 85% mortality from Z. radicans and > 93% mortality from B. bassiana. Pairing of inoculated males with clean moths of both sexes yielded higher rates of passive transmission of B. bassiana than Z. radicans, but there was no evidence for sexual transmission of either pathogen. Similarly, B. bassiana was more effectively transmitted from inoculated male moths to larvae foraging on whole plants. Single sporulating cadavers producing B. bassiana or Z. radicans conidia placed on plants infested with larvae resulted in a similar rate of transmission for both pathogens. However, an increase of the density of sporulating cadavers from one to three/plant increased Z. radicans transmission (greater than fourfold) but had no effect on B. bassiana transmission. Simultaneous inoculations of larvae with conidia of both fungi reduced the mortality induced by each pathogen, the reduction being most acute for B. bassiana-induced mortality. Inoculation of adults with both fungi showed that, at concentrations required for effective passive transmission to larvae, B. bassiana severely inhibited Z. radicans mycosis in adults. (C) 2001 Academic Press.
Resumo:
Survival and development time from egg to adult emergence of the diamondback moth, Plutella xylostella (L.), were determined at 19 constant and 14 alternating temperature regimes from 4 to 40degreesC. Plutella xylostella developed successfully front egg to adult emergence at constant temperatures from 8 to 32degreesC. At temperatures from 4 to 6degreesC or from 34 to 40degreesC, partial or complete development of individual stages or instars was possible, with third and fourth instars having the widest temperature limits. The insect developed successfully from egg to adult emergence under alternating regimes including temperatures as low as 4degreesC or as high as 38degreesC. The degree-day model, the logistic equation, and the Wang model were used to describe the relationships between temperature and development rate at both constant and alternating temperatures. The degree-day model described the relationships well from 10 to 30degreesC. The logistic equation and the Wang model fit the data well at temperatures 32degreesC. Under alternating regimes, all three models gave good simulations of development in the mid-temperature range, but only the logistic equation gave close simulations in the low temperature range, and none gave close or consistent simulations in the high temperature range. The distribution of development time was described satisfactorily by a Weibull function. These rate and time distribution functions provide tools for simulating population development of P. xylostella over a wide range of temperature conditions.
Resumo:
Field surveys of egg parasitoids of the diamondback moth, Plutella xylostella, were conducted at Redlands and Gatton, south-east Queensland. Eggs of P. xylostella were present all year round in both localities, and parasitized eggs were consistently found between late spring and early winter. Percent parasitism in the range 30-75% was recorded on many occasions, although rates less than 10% were more common. The major parasitoids included Trichogrammatoidea bactrae Nagaraja and Trichogramma pretiosum Riley. Laboratory evaluation showed that the T. pretiosum from Gatton has a high capacity to parasitize P. xylostella eggs under suitable conditions. This study represents the first record of egg parasitoids of P. xylostella from Australia.
Resumo:
Interactions between the immature stages of Diadegma semiclausum, an endolarval parasitoid of Plutella xylostella, and the fungal entomopathogen Beauveria bassiana were investigated in the laboratory. Detrimental effects of B. bassiana on D. semiclausum cocoon production and adult parasitoid emergence increased with increasing pathogen concentration and some parasitoid larvae became infected by B. bassiana within hosts. The negative impact of B. bassiana on D. semiclausum cocoon production decreased as temporal separation between parasitism and pathogen exposure increased. Adult parasitoid emergence was significantly compromised by the highest rates of B. bassiana tested even when exposure of host larvae to the pathogen was delayed until one day before predicted parasitoid cocoon formation. Parasitoid pupae were infected by the pathogen in all B. bassiana treatments which did not preclude their development. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Adult diamondback moths (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), inoculated with the fungus Zoophthora radicans, were released within a large field cage containing DBM-infested potted broccoli plants. Larvae and pupae on exposed and caged control plants were examined on five occasions over the next 48 days for evidence of Z. radicans infection. Infected larvae were first detected on exposed plants 4 days after the initial release of adults, and after 48 days the infection level reached 79%. Aerially borne conidia were a factor in transmission of the fungus. Infection had no effect on possible losses of larval and adult cadavers due to scavengers in field crops. In a trial to measure the influence of infection on dispersal, twice as many non-infected as infected males were recaptured in pheromone traps, although the difference in cumulative catch only became significant 3 days after release of the males. In a separate experiment, when adult moths were inoculated with Beauveria bassiana conidia and released into the field cage, DBM larvae collected from 37 of 96 plants sampled 4 days later subsequently died from B. bassiana infection. The distribution of plants from which the infected larvae were collected was random, but the distribution of infected larvae was clustered within the cage. These findings suggest that the auto-dissemination of fungal pathogens may be a feasible strategy for DBM control, provided that epizootics can be established and maintained when DBM population densities are low.
Resumo:
Maximizing the contribution of endemic natural enemies to integrated pest management (IPM) programs requires a detailed knowledge of their interactions with the target pest. This experimental field study evaluated the impact of the endemic natural enemy complex of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) on pest populations in commercial cabbage crops in southeastern Queensland, Australia. Management data were used to score pest management practices at experimental sites on independent Brassica farms practicing a range of pest management strategies, and mechanical methods of natural enemy exclusion were used to assess the impact of natural enemies on introduced cohorts of P. xylostella at each site. Natural enemy impact was greatest at sites adopting IPM and least at sites practicing conventional pest management strategies. At IPM sites, the contribution of natural enemies to P. xylostella mortality permitted the cultivation of marketable crops with no yield loss but with a substantial reduction in insecticide inputs. Three species of larval parasitoids (Diadegma semiclausum Hellen [Hymenoptera: Ichneumonidae], Apanteles ippeus Nixon [Hymenoptera: Braconidae], and Oomyzus sokolowskii Kurdjumov [Hymenoptera: Eulophidae]) and one species of pupal parasitoid Diadromus collaris Gravenhorst (Hymenoptera: Ichneumonidae) attacked immature P. xylostella. The most abundant groups of predatory arthropods caught in pitfall traps were Araneae (Lycosidae) > Coleoptera (Carabidae, Coccinelidae, Staphylinidae) > Neuroptera (Chrysopidae) > Formicidae, whereas on crop foliage Araneae (Clubionidae, Oxyopidae) > Coleoptera (Coccinelidae) > Neuroptera (Chrysopidae) were most common. The abundance and diversity of natural enemies was greatest at sites that adopted IPM, correlating greater P. xylostella mortality at these sites. The efficacy of the natural enemy complex to pest mortality under different pest management regimes and appropriate strategies to optimize this important natural resource are discussed.
Resumo:
Foraging adults of phytophagous insects are attracted by host-plant volatiles and supposedly repelled by volatiles from non-host plants. In behavioural control of pest insects, chemicals derived from non-host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non-host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non-host-plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non-host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non-host-plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host-plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.
Resumo:
The chalcid, Oomyzus sokolowskii Kurdjumov has been recorded in many parts of the world as a major larval-pupal, gregarious endoparasitoid of the diamondback moth, Plutella xylostella (Linnaeus), a serious pest of brassica vegetable crops worldwide. This study investigated intraspecific variation between two populations of O. sokiolowskii, one from Cape Verde Islands, West Africa and the other from Hangzhou, China. In all crosses and backcrosses between the two geographical populations, the numbers of progeny and sex ratio of progeny were similar to those obtained within each of the populations, demonstrating complete reproductive compatibility between the two populations. The two populations showed similar responses to temperature with respect to development time and survival of immature stages. Observations on the interactions between the two O. sokolowskii populations and Cotesia plutellae (Kurdjumov), another major parasitoid of P. xylostella, showed that neither population could achieve successful parasitism of P. xylostella larvae already parasitized by C. plutellac. However, both O. sokolowskii populations could achieve hyperparasitism by ovipositing into a mid-late stage larva of C. plutellae developing inside the primary host. Contrary to earlier reports, no evidence of intraspecific variations in ability to hyperparasitize between these two populations of O. sokolowskii was found.
Resumo:
We evaluated the role of the larval parasitoid, Diadegma semiclausum Hellen (Hymenoptera: Ichneumonidae), in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae) by cage exclusion experiments and direct field observation during the winter season in southern Queensland, Australia. The cage exclusion experiment involved uncaged, open cage and closed cage treatments. A higher percentage (54-83%) of P. xylostella larvae on sentinel plants were lost in the uncaged treatment than the closed (4-9%) or open cage treatments (11-29%). Of the larvae that remained in the uncaged treatment, 72-94% were parasitized by D. semiclausum , much higher than that in the open cage treatment (8-37% in first trial, and 38-63% in second trial). Direct observations showed a significant aggregation response of the field D. semiclausum populations to high host density plants in an experimental plot and to high host density plots that were artificially set-up near to the parasitoid source fields. The degree of aggregation varied in response to habitat quality of the parasitoid source field and scales of the manipulated host patches. As a result, density-dependence in the pattern of parasitism may depend on the relative degree of aggregation of the parasitoid population at a particular scale. A high degree of aggregation seems to be necessary to generate density-dependent parasitism by D. semiclausum . Integration of the cage exclusion experiment and direct observation demonstrated the active and dominant role of this parasitoid in controlling P. xylostella in the winter season. A biologically based IPM strategy, which incorporates the use of D. semiclausum with Bt, is suggested for the management of P. xylostella in seasons or regions with a mild temperature.
Resumo:
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host-searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA-treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA-treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect-feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.
Resumo:
1 Accurate assessment of the impact of natural enemies on pest populations is fundamental to the design of robust integrated pest management programmes. In most situations, diseases, predators and parasitoids act contemporaneously on insect pest populations and the impact of individual natural enemies, or specific groups of natural enemies, is difficult to interpret. These problems are exacerbated in agro-ecosystems that are frequently disrupted by the application of insecticides. 2 A combination of life-table and natural enemy exclusion techniques was utilized to develop a method for the assessment of the impact of endemic natural enemies on Plutella xylostella populations on commercial Brassica farms. 3 At two of the experimental sites, natural enemies had no impact on P. xylostella survival, at two other sites, natural enemy impact was low but, at a fifth site, natural enemies drastically reduced the P. xylostella population. 4 The calculation of marginal death rates and associated k-values allowed the comparison of mortality factors between experimental sites, and indicated that larval disappearance was consistently the most important mortality factor, followed by egg disappearance, larval parasitism and pupal parasitism. The appropriateness of the methods and assumptions made to calculate the marginal death rates are discussed. 5 The technique represents a robust and easily repeatable method for the analysis of the activity of natural enemies of P. xylostella, which could be adapted for the study of other phytophagous pests.