137 resultados para developmental processes
em University of Queensland eSpace - Australia
Resumo:
Neogenin, a close relative of the axon guidance receptor Deleted in Colorectal Cancer (DCC), has been shown to be a receptor for members of the Netrin and Repulsive Guidance Molecule (RGM) families. While Netrin-l-Neogenin interactions result in a chernoattractive axon guidance response, the interaction between Neogenin and RGMa induces a chemorepulsive response. Evidence is now accumulating that Neogenin is a multi-functional receptor regulating many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Little is known of the function of Neogenin in the adult, however, a novel role in the regulation of iron homeostasis is now emerging. While the signal transduction pathways activated by Neogenin are poorly understood, it is clear that the functional outcome of Neogenin activation, at least in the embryo, depends on both the developmental context as well as the nature of the ligand. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Interactions between Eph receptors and their ligands the ephrin proteins are critically important in many key developmental processes. Emerging evidence also supports a role for these molecules in postembryonic tissues, particularly in pathological processes, including tissue injury and tumor metastasis. We review the signaling mechanisms that allow the 14 Eph and nine ephrin proteins to deliver intracellular signals that regulate cell shape and movement. What emerges is that the initiation of these signals is critically dependent on which Eph and ephrin proteins are expressed, the level of their expression, and, in some cases, which splice variants are expressed. Diversity at the level of initial interaction and in the downstream signaling processes regulated by Eph-ephrin signaling provides a subtle, versatile system of regulation of intercellular adhesion, cell shape, and cell motility.
Resumo:
Development plays a significant role in biological evolution, and is likely to prove an effective route to overcoming the limitations of direct genotype-phenotype mappings in artificial evolution. Nonetheless, the relationship between development and evolution is complex and still poorly understood. One question of current interest concerns the possible role that developmental processes may play in orienting evolution. A first step towards exploring this issue from a theoretical perspective is understanding the structure of ontogenetic space: the space of possible genotype-phenotype mappings. Using a quantitative model of development that enables ontogenetic space to be characterised in terms of complexity, we show that ontogenetic landscapes have a characteristic structure that varies with genotypic properties.
Resumo:
Members of the GATA transcription factor gene family have been implicated in a variety of developmental processes, including that of the vertebrate central nervous system. However, the role of GATA proteins in spinal cord development remains unresolved. In this study, we investigated the expression and function of two GATA proteins, GATA2 and GATA3, in the developing chick spinal cord. We show that both proteins are expressed by a distinct subpopulation of ventral interneurons that share the same dorsoventral position as CHX10-positive V2 interneurons. However, no coexpression is observed between the two GATA proteins and CHX10. By in vivo notochord grafting and cyclopamine treatment, we demonstrate that the spatially restricted pattern of GATA3 expression is regulated, at least in part, by the signaling molecule Sonic hedgehog. In addition, we further show that Sonic hedgehog induces GATA3 expression in a dose-dependent manner. Using in ovo electroporations, we also demonstrate that GATA2 is upstream of GATA3 in the same epigenetic cascade and that GATA3 is capable of inducing GATA2 expression in vivo. Furthermore, the ectopically expressed GATA proteins can repress differentiation of other ventral cell fates, but not the development of progenitor populations identified by PAX protein expression. Taken together, our findings strongly suggest an important role for GATA2 and GATA3 proteins in the establishment of a distinct ventral interneuron subpopulation in the developing chick spinal cord. (C) 2002 Elsevier Science (USA).
Resumo:
Many kinds of transcription factors and regulators play key roles in a variety of developmental processes. In the present survey, genes encoding proteins with conserved HMG-box, bZip domains, and some types of zinc finger motifs were surveyed in the completely sequenced genome of Ciona intestinalis. In the present analysis, 21 HMG-box-containing genes and 26 bZip genes were identified as well as four small groups of zinc finger genes in the Ciona genome. The results also showed that a less redundant set of genes is present in the Ciona genome compared with vertebrate genomes. In addition, cDNA clones for almost all genes identified have been cloned and distributed as a Ciona intestinalis Gene Collection Release I. The present comprehensive analysis therefore provides a means to study the role of these transcription factors in developmental processes of basal chordates.
Resumo:
Plants are necessarily complex systems that require monitoring of multiple environmental signals and, in response to those signals, coordination of differentiation and development of an extensive array of cell types at multiple locations. This coordination must rely on integration of long-distance signals that provide a means of communication among different plant parts. We propose that the relatively well-characterized classical phytohormones must act with several other long-distance signals to achieve this level of organization with dynamic yet measured responses. This is supported by observations that classical phytohormones: (i) operate in complex yet experimentally unresolved networks involving cross-talk and feedback, (ii) are generally multifunctional and nonspecific and hence must rely on other long-distance cues or pre-set conditions to achieve specificity and (iii) are likely to mask roles of other long-distance signals in several experimental contexts. We present evidence for involvement of novel long-distance signals in three developmental processes-branching, flowering and nodulation, and discuss the possible identities of novel signalling molecules.
Resumo:
Sox genes encode transcription factors belonging to the HMG ( High Mobility Group) superfamily. They are conserved across species and involved in a number of developmental processes. In vitro studies have shown at least one Sox gene to be capable of inducing oncogenic transformation of fibroblast cells. In addition, overexpression and/or amplification of Sox genes are associated with a large number of tumour types in vivo. We review here the available evidence linking Sox gene expression and cancer, and show that this link is supported by extensive EST database analysis. This work provides a basis for further studies aimed at investigating the possible role of Sox genes in the oncogenic process. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
In recent years, there have been increasing numbers of transcripts identified that do not encode proteins, many of which are developmentally regulated and appear to have regulatory functions. Here, we describe the construction of a comprehensive mammalian noncoding RNA database (RNAdb) which contains over 800 unique experimentally studied noncoding RNAs (ncRNAs), including many associated with diseases and/or developmental processes. The database is available at http://research.imb.uq. edu.au/RNAdb and is searchable by many criteria. It includes microRNAs and snoRNAs, but not infrastructural RNAs, such as rRNAs and tRNAs, which are catalogued elsewhere. The database also includes over 1100 putative antisense ncRNAs and almost 20000 putative ncRNAs identified in high-quality murine and human cDNA libraries, with more to be added in the near future. Many of these RNAs are large, and many are spliced, some alternatively. The database will be useful as a foundation for the emerging field of RNomics and the characterization of the roles of ncRNAs in mammalian gene expression and regulation.
Resumo:
Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Nuclear receptors are a superfamily of metazoan transcription factors that have been shown to be involved in a wide range of developmental and physiological processes. A PCR-based survey of genomic DNA and developmental cDNAs from the ascidian Herdmania identifies eight members of this multigene family. Sequence comparisons and phylogenetic analyses reveal that these ascidian nuclear receptors are representative of five of the six previously defined nuclear receptor subfamilies and are apparent homologues of retinoic acid [NR1B], retinoid X [NR2B], peroxisome proliferator-activated [NR1C], estrogen related [NR3B], neuron-derived orphan (NOR) [NR4A3], nuclear orphan [NR4A], TR2 orphan [NR2C1] and COUP orphan [NR2F3] receptors. Phylogenetic analyses that include the ascidian genes produce topologically distinct trees that suggest a redefinition of some nuclear receptor subfamilies. These trees also suggest that extensive gene duplication occurred after the vertebrates split from invertebrate chordates. These ascidian nuclear receptor genes are expressed differentially during embryogenesis and metamorphosis.
Resumo:
Adults are proficient at reaching to grasp objects of interest in a cluttered workspace. The issue of concern, obstacle avoidance, was studied in 3 groups of young children aged 11-12, 9-10, and 7-8 years (n = 6 in each) and in 6 adults aged 18-24 years. Adults slowed their movements and decreased their maximum grip aperture when an obstacle was positioned close to a target object (the effect declined as the distance between target and obstacle increased). The children showed the same pattern, but the magnitude of the effect was quite different. In contrast to the adults, the obstacle continued to have a large effect when it was some distance from the target (and provided no physical obstruction to movement).
Resumo:
This study examined the role of global processing speed in mediating age increases in auditory memory span in 5- to 13-year-olds. Children were tested on measures of memory span, processing speed, single-word speech rate, phonological sensitivity, and vocabulary. Structural equation modeling supported a model in which age-associated increases in processing speed predicted the availability of long-term memory phonological representations for redintegration processes. The availability of long-term phonological representations, in turn, explained variance in memory span. Maximum speech rate did not predict independent variance in memory span. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Parental divorce is associated with problematic offspring adjustment, but the relation may be due to shared genetic or environmental factors. One way to test for these confounds is to study offspring of twins discordant for divorce. The current analyses used this design to separate the mechanisms responsible for the association between parental divorce, experienced either before or after the age of 16, and offspring well-being. The results were consistent with a causal role of divorce in earlier initiation of sexual intercourse and emotional difficulties, in addition to a greater probability of educational problems, depressed mood, and suicidal ideation. In contrast, the increased risk for cohabitation and earlier initiation of drug use was explained by selection factors, including genetic confounds.
Resumo:
Background. While the cognitive theory of obsessive-compulsive disorder (OCD) is one of the most widely accepted accounts of the maintenance of the disorder in adults, no study to date has systematically evaluated the theory across children, adolescence and adults with OCD. Method. This paper investigated developmental differences in the cognitive processing of threat in a sample of children, adolescents and adults with OCD. Using an idiographic assessment approach, as well as self-report questionnaires, this study evaluated cognitive appraisals of responsibility, probability, severity, thought-action fusion (TAF), thought-suppression, self-doubt and cognitive control. It was hypothesised that there would be age related differences in reported responsibility for harm, probability of harm, severity of harm, thought suppression, TAR self-doubt and cognitive control. Results. Results of this study demonstrated that children with OCD reported experiencing fewer intrusive thoughts, which were less distressing and less uncontrollable than those experienced by adolescents and adults with OCD. Furthermore, responsibility attitudes, probability biases and thought suppression strategies were higher in adolescents and adults with OCD. Cognitive processes of TAF, perceived severity of harm, self-doubt and cognitive control were found to be comparable across age groups. Conclusions. These results suggest that the current cognitive theory of OCD needs to address developmental differences in the cognitive processing of threat. Furthermore, for a developmentally sensitive theory of OCD, further investigation is warranted into other possible age related maintenance factors. Implications of this investigation and directions for future research are discussed.
Resumo:
Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.