5 resultados para deterministic bispectrum
em University of Queensland eSpace - Australia
Resumo:
'Free will' and its corollary, the concept of individual responsibility are keystones of the justice system. This paper shows that if we accept a physics that disallows time reversal, the concept of 'free will' is undermined by an integrated understanding of the influence of genetics and environment on human behavioural responses. Analysis is undertaken by modelling life as a novel statistico-deterministic version of a Turing machine, i.e. as a series of transitions between states at successive instants of time. Using this model it is proven by induction that the entire course of life is independent of the action of free will. Although determined by prior state, the probability of transitions between states in response to a standard environmental stimulus is not equal to 1 and the transitions may differ quantitatively at the molecular level and qualitatively at the level of the whole organism. Transitions between states correspond to behaviours. It is shown that the behaviour of identical twins (or clones), although determined, would be incompletely predictable and non-identical, creating an illusion of the operation of 'free will'. 'Free will' is a convenient construct for current judicial systems and social control because it allows rationalization of punishment for those whose behaviour falls outside socially defined norms. Indeed, it is conceivable that maintenance of ideas of free will has co-evolved with community morality to reinforce its operation. If the concept is free will is to be maintained it would require revision of our current physical theories.
Resumo:
Pulsed coherent excitation of a two-level atom strongly coupled to a resonant cavity mode will create a superposition of two coherent states of opposite amplitudes in the field. By choosing proper parameters of interaction time and pulse shape the field after the pulse will be almost disentangled from the atom and can be efficiently outcoupled through cavity decay. The fidelity of the generation approaches unity if the atom-field coupling strength is much larger than the atomic and cavity decay rates. This implies a strong difference between even and odd output photon number counts. Alternatively, the coherence of the two generated field components can be proven by phase-dependent annihilation of the generated nonclassical superposition state by a second pulse.