7 resultados para design based on origin

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formal methods have significant benefits for developing safety critical systems, in that they allow for correctness proofs, model checking safety and liveness properties, deadlock checking, etc. However, formal methods do not scale very well and demand specialist skills, when developing real-world systems. For these reasons, development and analysis of large-scale safety critical systems will require effective integration of formal and informal methods. In this paper, we use such an integrative approach to automate Failure Modes and Effects Analysis (FMEA), a widely used system safety analysis technique, using a high-level graphical modelling notation (Behavior Trees) and model checking. We inject component failure modes into the Behavior Trees and translate the resulting Behavior Trees to SAL code. This enables us to model check if the system in the presence of these faults satisfies its safety properties, specified by temporal logic formulas. The benefit of this process is tool support that automates the tedious and error-prone aspects of FMEA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mineral processing plants use two main processes; these are comminution and separation. The objective of the comminution process is to break complex particles consisting of numerous minerals into smaller simpler particles where individual particles consist primarily of only one mineral. The process in which the mineral composition distribution in particles changes due to breakage is called 'liberation'. The purpose of separation is to separate particles consisting of valuable mineral from those containing nonvaluable mineral. The energy required to break particles to fine sizes is expensive, and therefore the mineral processing engineer must design the circuit so that the breakage of liberated particles is reduced in favour of breaking composite particles. In order to effectively optimize a circuit through simulation it is necessary to predict how the mineral composition distributions change due to comminution. Such a model is called a 'liberation model for comminution'. It was generally considered that such a model should incorporate information about the ore, such as the texture. However, the relationship between the feed and product particles can be estimated using a probability method, with the probability being defined as the probability that a feed particle of a particular composition and size will form a particular product particle of a particular size and composition. The model is based on maximizing the entropy of the probability subject to mass constraints and composition constraint. Not only does this methodology allow a liberation model to be developed for binary particles, but also for particles consisting of many minerals. Results from applying the model to real plant ore are presented. A laboratory ball mill was used to break particles. The results from this experiment were used to estimate the kernel which represents the relationship between parent and progeny particles. A second feed, consisting primarily of heavy particles subsampled from the main ore was then ground through the same mill. The results from the first experiment were used to predict the product of the second experiment. The agreement between the predicted results and the actual results are very good. It is therefore recommended that more extensive validation is needed to fully evaluate the substance of the method. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques introduced to them in lectures before the experiment. The experiment was run simultaneously by several student groups, using the same materials. Comparing the results of their analyses of variance, students became aware of the difference between P values and significance levels in making statistical decisions. In the experiment, the complete randomized design was applied; however, it is easy to adjust the experiment to teach students simple regression and randomized block designs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 40 life history, myological, and osteological characters that Tibbetts (1992) used in his study of the hemiramphids are evaluated for both saury genera (Cololabis and Scomberesox) to determine if the Scomberesocidae are more closely related to the Zenarchopteridae, to the needlefishes (Belonidae), or to the halfbeaks (Hemiramphidae) and flyingfishes (Exocoetidae). Data were analyzed using PAUP*, and eight equally parsimonious trees were found (70 steps, CI 0.814, RI 0.938). This analysis indicates that sauries are most closely related to needlefishes, supporting the historical concept of the superfamily Scomberesocoidea as a monophyletic assemblage. A caudal displacement of the origin of the retractor dorsalis muscle is a tentative additional synapomorphy for all four saury species. Zenarchopteridae is strongly supported as a valid family sister to the Scomberesocoidea (decay index = 19, bootstrap = 100). Resolution of the internal structure of the Belonidae and the Hemiramphidae requires the identification of additional characters and examination of a greater number of taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the use of nanocrystal quantum dots as a quantum bus element for preparing various quantum resources for use in photonic quantum technologies. Using the Stark-tuning property of nanocrystal quantum dots as well as the biexciton transition, we demonstrate a photonic controlled-NOT (CNOT) interaction between two logical photonic qubits comprising two cavity field modes each. We find the CNOT interaction to be a robust generator of photonic Bell states, even with relatively large biexciton losses. These results are discussed in light of the current state of the art of both microcavity fabrication and recent advances in nanocrystal quantum dot technology. Overall, we find that such a scheme should be feasible in the near future with appropriate refinements to both nanocrystal fabrication technology and microcavity design. Such a gate could serve as an active element in photonic-based quantum technologies.