197 resultados para deoxyhypusine synthase 1
em University of Queensland eSpace - Australia
Resumo:
Five ripening-related ACC synthase cDNA isoforms were cloned from 80% ripe papaya cv. 'Sinta' by reverse transcription-PCR using gene-specific primers. Clone 2 had the longest transcript and contained all common exons and three alternative exons. Clones 3 and 4 contained common exons and one alternative exon each, while clone 1, the most common transcript, contained only the common exons. Clone 5 could be due to cloning artifacts and might not be a unique cDNA fragment. Thus, there are only four isoforms of ACC synthase mRNA. Southern blot analysis indicates that all five clones came from only one gene existing as a single copy in the 'Sinta' papaya genome. Multiple sequence alignment indicates that the four isoforms arise from a single gene, possibly through alternative splicing mechanisms. All the putative alternative exons were present at the 5'-end of the gene comprising the N-terminal region of the protein. 'Sinta' ACC synthase cDNAs were of the capacs 1 type and are most closely related to a 1.4 kb capacs 1-type DNA (AJ277160) from Eksotika papaya. No capacs 2-type cDNAs were cloned from 'Sinta' by RT-PCR. This is the first report of possible alternative splicing mechanism in ripening-related ACC synthase genes in hybrid papaya, possibly to modulate or fine-tune gene expression relevant to fruit ripening.
Resumo:
In a first step toward understanding the molecular basis of pineapple fruit development, a sequencing project was initiated to survey a range of expressed sequences from green unripe and yellow ripe fruit tissue. A highly abundant metallothionein transcript was identified during library construction, and was estimated to account for up to 50% of all EST library clones. Library clones with metallothionein subtracted were sequenced, and 408 unripe green and 1140 ripe yellow edited EST clone sequences were retrieved. Clone redundancy was high, with the combined 1548 clone sequences clustering into just 634 contigs comprising 191 consensus sequences and 443 singletons. Half of the EST clone sequences clustered within 13.5% and 9.3% of contigs from green unripe and yellow ripe libraries, respectively, indicating that a small subset of genes dominate the majority of the transcriptome. Furthermore, sequence cluster analysis, northern analysis, and functional classification revealed major differences between genes expressed in the unripe green and ripe yellow fruit tissues. Abundant genes identified from the green fruit include a fruit bromelain and a bromelain inhibitor. Abundant genes identified in the yellow fruit library include a MADS box gene, and several genes normally associated with protein synthesis, including homologues of ribosomal L10 and the translation factors SUI1 and eIF5A. Both the green unripe and yellow ripe libraries contained high proportions of clones associated with oxidative stress responses and the detoxification of free radicals.
Resumo:
It is well established that prostaglandins are essential mediators of bone resorption and formation. In the early 1990s, it was discovered that enzymatic reactions producing prostaglandins were regulated by two cyclooxygenase enzymes, one producing prostaglandins constitutively in tissues like the stomach, prostaglandin endoperoxide H synthase-1 (PGHS-1 or COX-1), and another induced by mitogens or inflammatory mediators (PGHS-2 or COX-2). This neat distinction has not been maintained because both enzymes act in different cell systems to provide physiological signaling, constitutively or by induction under certain conditions. For example, the regulation patterns of PGHS-1 and PGHS-2 are distinct, but the evidence shows that PGHS-2 functions constitutively in the skeleton. PGHS-2 hits quickly been established, therefore, as a key regulator of bone biology, capable of rapid and transient expression in bone cells, and mediating osteoclastogenesis, mechanotransduction, bone formation and fracture repair. The goal of this review is to Summarize the current state of our knowledge of PGHS regulation of bone metabolism and to identify some of the key unresolved challenges and questions that require further study. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Macropodid herpesvirus 1 (MaHV-1) is an unclassified alphaherpesvirus linked with the fatal infections of kangaroos and other marsupials. During the characterisation of the internal repeat region of MaHV-1, an open reading frame (ORF) encoding for thymidylate synthase (TS) gene was identified and completely sequenced. Southern blot analysis confirmed the presence of two copies of the TS gene in the MaHV-1 genome as expected. Computer analysis of the TS ORF showed it was 948 nucleotides in length. A putative polyadenylation signal was identified 17-22 bp inside the ORF implying a minimal or absent 3' untranslated region. The predicted polypeptide was 316 amino acid residues in length and contained the highly conserved motifs for folate binding and F-dUMP binding, typical of all TS enzymes. Interestingly, MaHV-1 TS polypeptide had highest similarity to the human TS polypeptide (81%) compared to the TS polypeptides of other herpesviruses (72-75%). Immediately upstream of the TS gene, a second ORF of 510 bp, encoding a polypeptide with 170 amino acid residues, was identified. The carboxyl domain of this MaHV-1 polypeptide shared 68% similarity to a 59 amino acid motif of human herpesvirus 1 ICP34.5, identifying it as the MaHV-1 ICP34.5 homologue. This is the first report of a herpesvirus that encodes for both TS and ICP34.5.
Resumo:
Background In familial hyperaldosteronism type I (FH-I), glucocorticoid treatment suppresses adrenocorticotrophic hormone-regulated hybrid gene expression and corrects hyperaldosteronism. Objective To determine whether the wild-type aldosterone synthase genes, thereby released from chronic suppression, are capable of functioning normally. Methods We compared mid-morning levels of plasma potassium, plasma aldosterone, plasma renin activity (PRA) and aldosterone : PRA ratios, measured with patients in an upright position, and responsiveness of aldosterone levels to infusion of angiotensin II (AII), for 11 patients with FH-I before and during long-term (0.8-14.3 years) treatment with 0.25-0.75 mg/day dexamethasone or 2.5-10 mg/day prednisolone. Results During glucocorticoid treatment, hypertension was corrected in all. Potassium levels, which had been low (< 3.5 mmol/l) in two patients before treatment, were normal in all during treatment (mean 4.0 +/- 0.1 mmol/l, range 3.5-4.6). Aldosterone levels during treatment [13.2 +/- 2.1 ng/100 ml (mean +/- SEM)] were lower than those before treatment (20.1 +/- 2.5 ng/100 ml, P < 0.05). PRA levels, which had been suppressed before treatment (0.5 +/- 0.2 ng/ml per h), were unsuppressed during treatment (5.1 +/- 1.5 ng/ml per h, P < 0.01) and elevated (> 4 ng/ml per h) in six patients. Aldosterone : PRA ratios, which had been elevated (> 30) before treatment (101.1 +/- 25.9), were much lower during treatment (4.1 +/- 1.0, P < 0.005) and below normal (< 5) in eight patients. Surprisingly, aldosterone level, which had not been responsive (< 50% rise) to infusion of AII for all 11 patients before treatment, remained unresponsive for 10 during treatment. Conclusions Apparently regardless of duration of glucocorticoid treatment in FH-I, aldosterone level remains poorly responsive to AII, with a higher than normal PRA and a low aldosterone : PRA ratio. This is consistent with there being a persistent defect in functioning of wild-type aldosterone synthase gene. (C) Rapid Science Publishers ISSN 0263-6352.
Resumo:
RT-PCR and direct sequence analyses were used to define mutations in the cystathionine beta-synthase (CBS) gene in two unrelated male patients with vitamin B6 nonresponsive homocystinuria. Both patients were compound heterozygotes for CBS alleles containing point mutations. One patient had a maternally derived G-->A transition in the splice-donor site of intron 1, resulting in aberrant splicing of CBS mRNA. The other allele contained a missense mutation resulting in the previously reported E144K mutant CBS protein. The second patient had a maternally derived 4 bp insertion in exon 17, predicted to cause a CBS peptide of altered amino acid sequence. A 494G-->A transition was found in exon 4 of the other allele, predicting a C165Y substitution. Expression of recombinant CBS protein, containing the C165Y mutation, had no detectable catalytic activity. Each mutation was confirmed in genomic DNA. (C) 1998 Wiley-Liss, Inc.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.
Resumo:
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coil, and purified the AHAS regulatory subunit of Ambidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.
Resumo:
Leucine and valine are formed in a common pathway from pyruvate in which the first intermediate is 2-acetolactate. In some bacteria, this compound also has a catabolic fate as the starting point for the butanediol fermentation. The enzyme (EC 4.1.3.18) that forms 2-acetolactate is known as either acetohydroxyacid synthase (AHAS) or acetolactate synthase (ALS), with the latter name preferred for the catabolic enzyme. A significant difference between AHAS and ALS is that the former requires FAD for catalytic activity, although the reason for this requirement is not well understood. Both enzymes require the cofactor thiamine diphosphate. Here, the crystallization and preliminary X-ray diffraction analysis of the Klebsiella pneumoniae ALS is reported. Data to 2.6 Angstrom resolution have been collected at 100 K using a rotating-anode generator and an R-AXIS IV++ detector. Crystals have unit-cell parameters a = 137.4, b = 143.9, c = 134.4 Angstrom, alpha = 90, beta = 108.4, gamma = 90degrees and belong to space group C2. Preliminary analysis indicates that there are four monomers located in each asymmetric unit.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested preciously that one repeat binds leucine while the second binds valine or isoleucine, with synergy between the two sites. We have mutated four residues in each repeat, based on a model of the regulatory subunit. The data confirm that there are separate leucine and valine/isoleucine sites, and suggest a complex pathway for regulatory signal transmission to the catalytic subunit. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Caveolae and their proteins, the caveolins, transport macromolecules; compartmentalize signalling molecules; and are involved in various repair processes. There is little information regarding their role in the pathogenesis of significant renal syndromes such as acute renal failure (ARF). In this study, an in vivo rat model of 30 min bilateral renal ischaemia followed by reperfusion times from 4 h to 1 week was used to map the temporal and spatial association between caveolin-1 and tubular epithelial damage (desquamation, apoptosis, necrosis). An in vitro model of ischaemic ARF was also studied, where cultured renal tubular epithelial cells or arterial endothelial cells were subjected to injury initiators modelled on ischaemia-reperfusion (hypoxia, serum deprivation, free radical damage or hypoxia-hyperoxia). Expression of caveolin proteins was investigated using immunohistochemistry, immunoelectron microscopy, and immunoblots of whole cell, membrane or cytosol protein extracts. In vivo, healthy kidney had abundant caveolin-1 in vascular endothelial cells and also some expression in membrane surfaces of distal tubular epithelium. In the kidneys of ARF animals, punctate cytoplasmic localization of caveolin-1 was identified, with high intensity expression in injured proximal tubules that were losing basement membrane adhesion or were apoptotic, 24 h to 4 days after ischaemia-reperfusion. Western immunoblots indicated a marked increase in caveolin-1 expression in the cortex where some proximal tubular injury was located. In vitro, the main treatment-induced change in both cell types was translocation of caveolin-1 from the original plasma membrane site into membrane-associated sites in the cytoplasm. Overall, expression levels did not alter for whole cell extracts and the protein remained membrane-bound, as indicated by cell fractionation analyses. Caveolin-1 was also found to localize intensely within apoptotic cells. The results are indicative of a role for caveolin-1 in ARF-induced renal injury. Whether it functions for cell repair or death remains to be elucidated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC 4.1.3.18) catalyzes the first step in branchedchain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 Angstrom resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K-i of 3.3 nM blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.