3 resultados para density gradient centrifugation
em University of Queensland eSpace - Australia
Resumo:
Background Many clinical trials of DC-based immunotherapy involve administration of monocyte-derived DCs (Mo-DC) on multiple occasions. We aimed to determine the optimal cell processing procedures and timing (leukapheresis, RBC depletion and cryopreservation) for generation of Mo-DC for clinical purposes. Methods Leukapheresis was undertaken using a COBE Spectra. Two instrument settings were compared - the standard semi-automated software (Version 4.7) (n = 10) and the fully automated software (Version 6.0) (n = 40). Density gradient centrifugation using Ficoll, Percoll, a combination of these methods or neither for RBC depletion were compared. Outcomes (including cell yield and purity) were compared for cryopreserved unmanipulated monocytes and cryopreserved Mo-DC. Results Software Version 6.0 provided significantly better enrichment for monocytes (P
Resumo:
Lipophorin is the major lipid carrier in insects, but various observations indicate that lipophorin is also involved in immune reactions. To examine a possible role of lipophorin in defence reactions, we mixed hemolymph plasma from Galleria mellonella with LPS and noticed that lipophorin forms detergent-insoluble aggregates, while most other plasma proteins are not affected. Lipophorin particles isolated by low-density gradient centrifugation retained LPS-induced aggregation properties, which suggested to us that these immune-reactive particles are able to recognise LPS and respond by forming insoluble aggregates. Antibodies against LPS-binding proteins, such as immulectin-2 and beta-1,3-glucan binding protein, cross-reacted with proteins associated with purified lipophorin particles. To examine whether LPS-mediated aggregates inactivate LPS, we added LPS-lipophorin mixtures to purified lipophorin particles and monitored aggregate formation. Under these conditions lipophorin did not form insoluble aggregates, which indicates that lipophorin particles sequester LPS into non-toxic aggregates. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the performance analysis of separation of mutually independent sources in nonlinear models. The nonlinear mapping constituted by an unsupervised linear mixture is followed by an unknown and invertible nonlinear distortion, are found in many signal processing cases. Generally, blind separation of sources from their nonlinear mixtures is rather difficult. We propose using a kernel density estimator incorporated with equivariant gradient analysis to separate the sources with nonlinear distortion. The kernel density estimator parameters of which are iteratively updated to minimize the output independence expressed as a mutual information criterion. The equivariant gradient algorithm has the form of nonlinear decorrelation to perform the convergence analysis. Experiments are proposed to illustrate these results.