30 resultados para deep learning,machine learning,computer vision,template matching,neural network

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction - Group learning has been used to enhance deep (long-term) learning and promote life skills, such as decision making, communication, and interpersonal skills. However, with increasing multiculturalism in higher education, there is little information available as to the acceptance of this form of learning by Asian students or as to its value to them. Methodology - Group-learning projects, incorporating a seminar presentation, were used in first-year veterinary anatomical science classes over two consecutive years (2003 and 2004) at the School of Veterinary Science, University of Queensland. Responses of Australian and Asian students to survey forms evaluating the learning experience were analyzed and compared. Results - All students responded positively to the group learning, indicating that it was a useful learning experience and a great method for meeting colleagues. There were no significant differences between Asian and Australian students in overall responses to the survey evaluating the learning experience, except where Asian students responded significantly higher than Australian students in identifying specific skills that needed improving. Conclusions - Group learning can be successfully used in multicultural teaching to enhance deep learning. This form of learning helps to remove cultural barriers and establish a platform for continued successful group learning throughout the program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beyond the inherent technical challenges, current research into the three dimensional surface correspondence problem is hampered by a lack of uniform terminology, an abundance of application specific algorithms, and the absence of a consistent model for comparing existing approaches and developing new ones. This paper addresses these challenges by presenting a framework for analysing, comparing, developing, and implementing surface correspondence algorithms. The framework uses five distinct stages to establish correspondence between surfaces. It is general, encompassing a wide variety of existing techniques, and flexible, facilitating the synthesis of new correspondence algorithms. This paper presents a review of existing surface correspondence algorithms, and shows how they fit into the correspondence framework. It also shows how the framework can be used to analyse and compare existing algorithms and develop new algorithms using the framework's modular structure. Six algorithms, four existing and two new, are implemented using the framework. Each implemented algorithm is used to match a number of surface pairs. Results demonstrate that the correspondence framework implementations are faithful implementations of existing algorithms, and that powerful new surface correspondence algorithms can be created. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selection of machine learning techniques requires a certain sensitivity to the requirements of the problem. In particular, the problem can be made more tractable by deliberately using algorithms that are biased toward solutions of the requisite kind. In this paper, we argue that recurrent neural networks have a natural bias toward a problem domain of which biological sequence analysis tasks are a subset. We use experiments with synthetic data to illustrate this bias. We then demonstrate that this bias can be exploitable using a data set of protein sequences containing several classes of subcellular localization targeting peptides. The results show that, compared with feed forward, recurrent neural networks will generally perform better on sequence analysis tasks. Furthermore, as the patterns within the sequence become more ambiguous, the choice of specific recurrent architecture becomes more critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of energy minimisation methods for stereo matching has been demonstrated to produce high quality disparity maps. However the majority of these methods are known to be computationally expensive, requiring minutes or even hours of computation. We propose a fast minimisation scheme that produces strongly competitive results for significantly reduced computation, requiring only a few seconds of computation. In this paper, we present our iterated dynamic programming algorithm along with a quadtree subregioning process for fast stereo matching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.