110 resultados para de novo synthesis
em University of Queensland eSpace - Australia
Resumo:
Leaves of the subtropical understorey shrub Schefflera arboricola Hayata growing in full sunlight had higher specific leaf weight, higher chlorophyll a/b ratios, lower total chlorophyll content and a threefold higher xanthophyll cycle pigment content than leaves growing in a naturally shaded, but sunfleck-punctuated, environment. A number of measurements, all made in situ and during natural day/night cycles, were taken as follows: current photochemical capacity (F-v/F-m after 10 min dark-adaptation), size and epoxidation state of the xanthophyll cycle, CO2 gas exchange and determination of the D1 synthesis rate. In sun leaves the lowest daily F-v/F-m was found to be approximately 0.6, the change from maximum correlating with an increase in zeaxanthin. Daily changes in zeaxanthin were partly due to de novo synthesis and turnover. We suggest that sun leaves can dissipate most of the excess light energy absorbed safely via the photoprotective xanthophyll cycle. D1 synthesis rates did not correlate with photosynthetic photon flux density or F-v/F-m. The shade leaves had high F-v/F-m values and constant photosynthetic rates throughout the day except during sunflecks, when photosynthetic rates increased and D1 synthesis accelerated, all without a substantial decrease in F-v/F-m. It seems that leaves of S. arboricola adapted to natural shade conditions can use sunflecks to contribute significantly to their productivity. The third leaf type investigated was from greenhouse-grown plants of S. arboricola after exposure to full sunlight. These leaves showed a rapid and large reduction in F-v/F-m (to 0.3), which neither correlated with zeaxanthin formation nor recovered within the same day. From long-term effects following full sunlight exposure of greenhouse-grown plants we suggest that this F-v/F-m reduction actually reflects photodestruction.
Resumo:
Extracts of the dorid nudibranch Asteronotus cespitosus from two geographically separate regions of Australia and from the Philippines were compared using thin-layer, high-performance liquid and gas chromatography and H-1 NMR analysis. Halogenated metabolites were detected in all mollusk specimens. The major component detected in digestive tissue of specimens from the Great Barrier Reef in northeastern Australia was 4,6-dibromo2-(2',4'-dibromophenoxy)phenol (1), with minor amounts of 3,5-dibromo-2(3',5'-dibromo-20-methoxyphenoxy)phenol (2). In a specimen collected from northwestern Australia, only 3,5-dibromo-2-(3',5'-dibromo-2'-methoxyphenoxy)phenol was found. The specimen from the Philippines contained 2,3,4,5-tetrabromo-6-(2'-bromophenoxy) phenol (3) together with a novel chlorinated pyrrolidone (4). In addition, the sesquiterpenes dehydroherbadysidolide (5) and spirodysin (6) were detected in the digestive organs and mantle tissue of the nudibranchs from the Great Barrier Reef and from the Philippines, whereas these chemicals were not found in the specimen from northwestern Australia. All of the chemicals (1-3,5, and 6) have previously been isolated from the sponge Dysidea herbacea, as have chlorinated metabolites related to 4. This is the first time the characteristic halogenated metabolites that typify Dysidea herbacea have been reported from a carnivorous mollusk, which implies a dietary origin as opposed to de novo synthesis.
Resumo:
Passive avoidance learning is with advantage studied in day-old chicks trained to distinguish between beads of two different colors, of which one at training was associated with aversive taste. During the first 30-min post-training, two periods of glutamate release occur in the forebrain. One period is immediately after the aversive experience, when glutamate release is confined to the left hemisphere. A second release, 30 min later, may be bilateral, perhaps with preponderance of the right hemisphere. The present study showed increased pool sizes of glutamate and glutamine, specifically in the left hemisphere, at the time when the first glutamate release occurs, indicating de novo synthesis of glutamate/glutamine from glucose or glycogen, which are the only possible substrates. Behavioral evidence that memory is extinguished by intracranial administration at this time of iodoacetate, an inhibitor of glycolysis and glycogenolysis, and that the extinction of memory is counteracted by injection of glutamine, supports this concept. A decrease in forebrain glycogen of similar magnitude and coinciding with the increase in glutamate and glutamine suggests that glycogen rather than glucose is the main source of newly synthesized glutamate/glutamine. The second activation of glutamatergic activity 30 min after training, when memory is consolidated into stable, long-term memory, is associated with a bilateral increase in pool size of glutamate/glutamine. No glycogenolysis was observed at this time, but again there is a temporal correlation with sensitivity to inhibition by iodoacetate and rescue by glutamine, indicating the importance of de novo synthesis of glutamate/glutamine from glucose or glycogen. (C) 2003 Elsevier B.V All rights reserved.
Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases
Resumo:
Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity. Steady-state enzymatic parameters were determined on homopolymeric template poly(rC). The presence of the MTase domain does not affect the RdRp activity. Flavivirus RdRp domains might bear more than one GTP binding site displaying positive cooperativity. The kinetics of RNA synthesis by four Flaviviridae RdRps were compared. In comparison to Hepatitis C RdRp, DV and WNV as well as Bovine Viral Diarrhea virus RdRps show less rate limitation by early steps of short-product fort-nation. This suggests that they display a higher conformational flexibility upon the transition from initiation to elongation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Intracellular Wolbachia infections are extremely common in arthropods and exert profound control over the reproductive biology of the host. However, very little is known about the underlying molecular mechanisms which mediate these interactions with the host. We examined protein synthesis by Wolbachia in a Drosophila host in vivo by selective metabolic labelling of prokaryotic proteins and subsequent analysis by 1D and 2D gel electrophoresis. Using this method we could identify the major proteins synthesized by Wolbachia in ovaries and testes of flies. Of these proteins the most abundant was of low molecular weight and showed size variation between Wolbachia strains which correlated with the reproductive phenotype they generated in flies. Using the gel systems we employed it was not possible to identify any proteins of Wolbachia origin in the mature sperm cells of infected flies.
Resumo:
The binuclear complex [NBu4n](4)[Cr-2(ox)(5)]. 2CHCl(3) has been prepared by an ion-exchange procedure employing Dowex 50WX2 cation-exchange resin in the n-butylammonium form and potassium tris(oxalato)chromate(III). The dimeric complex was characterised by a crystal structure determination: monoclinic, space group C2/c, a = 29.241(7), b = 15.192(2), c = 22.026(5) Angstrom, beta = 94.07(1)degrees, Z = 4. The magnetic susceptibility (300-4.2 K) indicated that the chromium(III) sites were antiferromagnetically coupled (J = -3.1 cm(-1)).
Resumo:
Formaldehyde-derived oxazolidine derivatives 4-7 of the beta-adrenoreceptor antagonists metoprolol 1, atenolol 2 and timolol 3 have been synthesised. Conformational analysis of 1-3 and the oxazolidine derivatives 4-7 has been performed using H-1 NMR spectroscopy and computational methods. The H-1 NMR studies show that for the aryloxypropanolamine beta-adrenoreceptor antagonists there is a predominance of the conformer in which the amine group is approximately antiperiplanar or trans to the aryloxymethylene group. Both H-1 NMR data and theoretical studies indicate that the oxazolidine derivatives 4-7 and the aryloxypropanolamine beta-adrenoreceptor antagonists 1-3 adopt similar conformations around the beta-amino alcohol moiety. Thus, oxazolidine ring formation does not dramatically alter the preferred conformation adopted by the beta-amino alcohol moiety of 1-3. Oxazolidine derivatives of aryloxypropanolamine beta-adrenoreceptor antagonists may therefore be appropriate as prodrugs, or semi-rigid analogues, when greater lipophilicity is required for drug delivery.
Resumo:
In this work we have defined the nature of the p-cresol and p-thiocresol adducts generated from acylium ions during HF cleavage, following contemporary Boc/benzyl solid-phase peptide synthesis. Contrary to the results in previous reports, we found that both p-cresol and p-thiocresol predominantly form. aryl esters under typical cleavage conditions. Initially we investigated a number of small peptides containing either a single glutamate residue or a C-terminal long-chain amino acid which allowed us to unambiguously characterize the scavenged side products. Whereas, the p-cresol esters are stable at 0 degrees C they rearrange irreversibly at higher temperatures (5-20 degrees C) to form aryl ketones. By contrast, p-thiocresol esters do not undergo a Fries rearrangement but readily undergo further additions of p-thiocresol to form ketenebisthioacetals and trithio ortho esters, even at low temperatures. Importantly, we found by LC/MS and FT-ICR MS analysis that peptides containing p-cresol esters at glutamyl side chains are susceptible to amidation and fragmentation reactions at these sites during standard mild base workup procedures. The significance of these side reactions was further demonstrated in the synthesis of neutrophil immobilization factor, a 26-residue peptide, containing four glutamic acid residues. The side reactions were largely avoided by mild hydrogen peroxide-catalyzed hydrolysis which converted the p-cresol adducts to the free carboxylic acids in near quantitative yield. The choice of p-cresol as a reversible acylium ion scavenger when coupled with the simple workup conditions described is broadly applicable to Boc/benzyl peptide synthesis and will significantly enhance the quality of peptides produced.
Resumo:
Symbiotic Aiptasia pulchella and freshly isolated zooxanthellae were incubated in (NaHCO3)-C-14 and NH4Cl for 1 to 240 min, and samples were analysed by reverse-phase high-performance liquid chromatography (HPLC) and an online radiochemical detector. NH4+ was first assimilated into C-14-glutamate and C-14-glutamine in the zooxanthellae residing in A. pulchella. The specific activities (dpm nmol(-1)) of C-14-glutamate and C-14-glutamine in vivo, were far greater in the zooxanthellae than in the host tissue, indicating that NH4+ was principally incorporated into the glutamate and glutamine pools of the zooxanthellae. C-14-alpha-ketoglutarate was taken up from the medium by intact A. pulchella and assimilated into a small amount of C-14-glutamate in the host tissue, but no C-14-glutamine was detected in the host fraction. The C-14-glutamate that was synthesized was most likely produced from transamination reactions as opposed to the direct assimilation of NH4+. The free aminoacid composition of the host tissue and zooxanthellae of A. pulchella was also measured. The results presented here demonstrate that NH4+ was initially assimilated by the zooxanthellae of A. pulchella.
Resumo:
Hydroperoxide derivatives of beta-oxa-substituted polyunsaturated fatty acids were prepared by 15-lipoxygenase catalysed oxidation and perketal derivatives of fatty acid hydroperoxides were synthesized. The perketals are more stable than their parent fatty acid hydroperoxides, but less active as antimalarial agents in the in vitro growth inhibition of Plasmodium falciparum. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
2-(1-Aminoalkyl)oxazole-4 and 5-carboxylates are available, without detectable racemisation, by a sequence involving N-acylation of isoxazol-5(2H)one carboxylates with phthalimidoamino acids, photolysis of the acylated product, and hydrazinolysis. An application of the procedure to the synthesis of almazole A and B is described (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Hydromorphone-3-glucuronide (H3G) was synthesized biochemically using rat liver microsomes, uridine-5'-diphosphoglucuronic acid (UDPGA) and the substrate, hydromorphone. Initially, the crude putative H3G product was purified by ethyl acetate precipitation and washing with acetonitrile, Final purification was achieved using semi-preparative high-performance-liquid-chromatography (HPLC) with ultraviolet (UV) detection. The purity of the final H3G product was shown by HPLC with electrochemical and ultraviolet detection to be > 99.9% and it was produced in a yield of approximate to 60% (on a molar basis). The chemical structure of the putative H3G was confirmed by enzymatic hydrolysis of the glucuronide moiety using P-glucuronidase, producing a hydrolysis product with the same HPLC retention time as the hydromorphone reference standard. Using HPLC with tandem mass spectrometry (HPLC-MS-MS) in the positive ionization mode, the molecular mass (M+1) was found to be 462 g/mol, in agreement with H3G's expected molecular weight of 461 g/mol. Importantly, proton-NMR indicated that the glucuronide moiety was attached at the 3-phenolic position of hydromorphone. A preliminary evaluation of H3G's intrinsic pharmacological effects revealed that following icy administration to adult male Sprague-Dawley rats in a dose of 5 mu g, H3G evoked a range of excitatory behavioural effects.including chewing, rearing, myoclonus, ataxia and tonic-clonic convulsions, in a manner similar to that reported previously for the glucuronide metabolites of morphine, morphine-3-glucuronide and normorphine-3-glucuronide.
Resumo:
The macrocyclic compounds (6-(4',6'-diamino-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) triperchlorate dihydrate, [Cu(HL2)](ClO4)(3). 2H(2)O, (6-(6'-amino-4'-oxo-1'H-1',3',5'-triazinyl)-1,4,6,8,11-pentaazacyclotetradecane)copper(II) diperchlorate hydrate, [CuL3](ClO4)(2). H2O, and [(6-(4',6'-dioxo-1'H-1',3',5'-triazinyl) 1,4,6,8,11-pentaazacyclotetradecane)copper(II)] diperchlorate, [CuL4](ClO4)(2), have been synthesized. The macrocycles synthesized contain respectively pendant melamine, ammeline,and ammelide rings. The X-ray cyrstallographic analyses of [Cu(HL2)](ClO4)(3). 2H(2)O, triclinic, space group P (1) over bar, a = 9.489(10) Angstrom, b = 12.340(2) Angstrom, c = 24.496(4) Angstrom, alpha = 87.74(10)degrees beta = 85.51(10)degrees gamma = 70.95(10)degrees and Z = 4, and {[CuL3](ClO4)(2). H2O}2, monoclinic, space group C2/c, a = 18.624(8) Angstrom, b = 17.160(2) Angstrom, c = 15.998(6) Angstrom, beta = 117.82(2)degrees, and Z = 4, are reported. The structure of [Cu(HL2)](ClO4)(3). 2H(2)O shows the formation of linear tapes, formed by a combination of hydrogen bonds and pi-pi stacking interactions. The structure of [CuL3](ClO4)(2). H2O displays formation of dimers, formed by a coordinate bond from the oxygen in one molecule to the copper atom of another. The tautomeric forms of the ammeline and ammelide moieties have been determined. The potential of these compounds as subunits for cocrystallization has been investigated.