13 resultados para data-driven Stochastic Subspace Identification (SSI-data)
em University of Queensland eSpace - Australia
Resumo:
The majority of common diseases such as cancer, allergy, diabetes, or heart disease are characterized by complex genetic traits, in which genetic and environmental components contribute to disease susceptibility. Our knowledge of the genetic factors underlying most of such diseases is limited. A major goal in the post-genomic era is to identify and characterize disease susceptibility genes and to use this knowledge for disease treatment and prevention. More than 500 genes are conserved across the invertebrate and vertebrate genomes. Because of gene conservation, various organisms including yeast, fruitfly, zebrafish, rat, and mouse have been used as genetic models.
Resumo:
The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper develops an interactive approach for exploratory spatial data analysis. Measures of attribute similarity and spatial proximity are combined in a clustering model to support the identification of patterns in spatial information. Relationships between the developed clustering approach, spatial data mining and choropleth display are discussed. Analysis of property crime rates in Brisbane, Australia is presented. A surprising finding in this research is that there are substantial inconsistencies in standard choropleth display options found in two widely used commercial geographical information systems, both in terms of definition and performance. The comparative results demonstrate the usefulness and appeal of the developed approach in a geographical information system environment for exploratory spatial data analysis.
Resumo:
There are two main types of data sources of income distributions in China: household survey data and grouped data. Household survey data are typically available for isolated years and individual provinces. In comparison, aggregate or grouped data are typically available more frequently and usually have national coverage. In principle, grouped data allow investigation of the change of inequality over longer, continuous periods of time, and the identification of patterns of inequality across broader regions. Nevertheless, a major limitation of grouped data is that only mean (average) income and income shares of quintile or decile groups of the population are reported. Directly using grouped data reported in this format is equivalent to assuming that all individuals in a quintile or decile group have the same income. This potentially distorts the estimate of inequality within each region. The aim of this paper is to apply an improved econometric method designed to use grouped data to study income inequality in China. A generalized beta distribution is employed to model income inequality in China at various levels and periods of time. The generalized beta distribution is more general and flexible than the lognormal distribution that has been used in past research, and also relaxes the assumption of a uniform distribution of income within quintile and decile groups of populations. The paper studies the nature and extent of inequality in rural and urban China over the period 1978 to 2002. Income inequality in the whole of China is then modeled using a mixture of province-specific distributions. The estimated results are used to study the trends in national inequality, and to discuss the empirical findings in the light of economic reforms, regional policies, and globalization of the Chinese economy.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).
Resumo:
For zygosity diagnosis in the absence of genotypic data, or in the recruitment phase of a twin study where only single twins from same-sex pairs are being screened, or to provide a test for sample duplication leading to the false identification of a dizygotic pair as monozygotic, the appropriate analysis of respondents' answers to questions about zygosity is critical. Using data from a young adult Australian twin cohort (N = 2094 complete pairs and 519 singleton twins from same-sex pairs with complete responses to all zygosity items), we show that application of latent class analysis (LCA), fitting a 2-class model, yields results that show good concordance with traditional methods of zygosity diagnosis, but with certain important advantages. These include the ability, in many cases, to assign zygosity with specified probability on the basis of responses of a single informant (advantageous when one zygosity type is being oversampled); and the ability to quantify the probability of misassignment of zygosity, allowing prioritization of cases for genotyping as well as identification of cases of probable laboratory error. Out of 242 twins (from 121 like-sex pairs) where genotypic data were available for zygosity confirmation, only a single case was identified of incorrect zygosity assignment by the latent class algorithm. Zygosity assignment for that single case was identified by the LCA as uncertain (probability of being a monozygotic twin only 76%), and the co-twin's responses clearly identified the pair as dizygotic (probability of being dizygotic 100%). In the absence of genotypic data, or as a safeguard against sample duplication, application of LCA for zygosity assignment or confirmation is strongly recommended.
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
The cell cycle is one of the most fundamental processes within a cell. Phase-dependent expression and cell-cycle checkpoints require a high level of control. A large number of genes with varying functions and modes of action are responsible for this biology. In a targeted exploration of the FANTOM2-Variable Protein Set, a number of mouse homologs to known cell-cycle regulators as well as novel members of cell-cycle families were identified. Focusing on two prototype cell-cycle families, the cyclins and the NIMA-related kinases (NEKs), we believe we have identified all of the mouse members of these families, 24 cyclins and 10 NEKs, and mapped them to ENSEMBL transcripts. To attempt to globally identify all potential cell cycle-related genes within mouse, the MGI (Mouse Genome Database) assignments for the RIKEN Representative Set (RPS) and the results from two homology-based queries were merged. We identified 1415 genes with possible cell-cycle roles, and 1758 potential paralogs. We comment on the genes identified in this screen and evaluate the merits of each approach.
Resumo:
We examined early social influences across stages of smoking within the context of a twin study using an environmental exposure specific to smoking: whether twins started smoking at the same time (simultaneous smoking initiation: SSI). We expected that SSI would be a good index of shared social influences on smoking initiation. Rates of SSI were indeed significantly higher in MZ twins and in twins who shared peers and classes, as well as in male twins. With the exception of regular smoking in females, we found no significant difference in estimates of genetic and environmental parameters between SSI and non-SSI pairs for any of the smoking measures that we examined (DSM-IV and Fagerstrom HSI measures of nicotine dependence; DSM-IV nicotine withdrawal; heavy smoking; and in males, regular smoking). For regular smoking in females, allowing for additional shared environmental influences associated with SSI only modestly reduced our estimates of additive genetic variance (56% vs. 68%). These results indicate the important social influences that may occur for smoking initiation do not appear to seriously bias estimates of genetic effects on later stages of smoking.
Resumo:
Multiple frequency bio-electrical impedance analysis (MFBIA) may be useful for monitoring fluid balance in newborn infants or to provide early prediction of the outcome following perinatal asphyxia. A reference range of data is needed for identification of babies with abnormal impedance values. This was a cross-sectional observational study in 84 term and near-term healthy neonates less than 12 h postpartum. Whole body and cerebral MFBIA measurements were performed at the bedside in the post-natal ward. Gestational age, post-natal age, gender, birthweight, head circumference and foot length measures were recorded. Reference values for impedance at the characteristic frequency (Z(C)) and resistance at zero frequency (R-0) are reported for whole body and cerebral impedance. Significant correlations (p < 0.05) were observed between whole body impedance and birthweight, footlength and head circumference. Females had a significantly higher whole body R0 than males. Cerebral impedance did not correlate significantly with any of the demographic measures and therewere no gender differences observed for cerebral impedance. The reference range for whole body multi-frequency bio-impedance values in term and near-term infants within the first 12 h postpartum can be calculated from the footlength (FL) using the following equations: Z(C) = (942.9 - 4.818* FL) +/- 124.6 Omega; R-0 = (1042 - 4.520(*)FL) +/- 135.5 Omega. For cerebral impedance the reference range is 29.5-48.7 Omega for Z(C) and 33.7-58.0 Omega for R-0.
Resumo:
A complete workflow specification requires careful integration of many different process characteristics. Decisions must be made as to the definitions of individual activities, their scope, the order of execution that maintains the overall business process logic, the rules governing the discipline of work list scheduling to performers, identification of time constraints and more. The goal of this paper is to address an important issue in workflows modelling and specification, which is data flow, its modelling, specification and validation. Researchers have neglected this dimension of process analysis for some time, mainly focussing on structural considerations with limited verification checks. In this paper, we identify and justify the importance of data modelling in overall workflows specification and verification. We illustrate and define several potential data flow problems that, if not detected prior to workflow deployment may prevent the process from correct execution, execute process on inconsistent data or even lead to process suspension. A discussion on essential requirements of the workflow data model in order to support data validation is also given..
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.