8 resultados para data-based reporting
em University of Queensland eSpace - Australia
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.
Resumo:
In large epidemiological studies missing data can be a problem, especially if information is sought on a sensitive topic or when a composite measure is calculated from several variables each affected by missing values. Multiple imputation is the method of choice for 'filling in' missing data based on associations among variables. Using an example about body mass index from the Australian Longitudinal Study on Women's Health, we identify a subset of variables that are particularly useful for imputing values for the target variables. Then we illustrate two uses of multiple imputation. The first is to examine and correct for bias when data are not missing completely at random. The second is to impute missing values for an important covariate; in this case omission from the imputation process of variables to be used in the analysis may introduce bias. We conclude with several recommendations for handling issues of missing data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.
Resumo:
Background and Purpose. Arm lymphedema following breast cancer In this study, we assessed the surgery is a continuing problem. reliability and validity of circumferential measurements and water displacement for measuring upper-limb volume. Subjects. Participants included subjects who had had breast cancer surgery, including axillary dissection-19 with and 22 without a diagnosis of arm lymphedema-and 25 control subjects. Methods. Two raters measured each subject by using circumferential tape measurements at specified distances from the fingertips and in relation to anatornic landmarks and by using water displacement. Interrater reliability was calculated by analysis of variance and multilevel modeling. Volumes from circumferential measurements were compared with those from water displacement by use of means and correlation coefficients, respectively. The standard error of measurement, minimum detectable change (MDC), and limits of agreement (LOA) for volumes also were calculated. Results. Arm volumes obtained with these methods had high reliability. Compared with volumes from water displacement, volumes from circumferential measurements had high validity, although these volumes were slightly larger. Expected differences between subjects with and without clinical lymphedema following breast cancer were found. The MDC of volumes or the error associated with a single measure for data based oil anatomic landmarks was lower than that based oil distance from fingertips. The mean LOA with water displacement were lower for data based on anatomic landmarks than for data based on distance from fingertips. Discussion and Conclusion. Volumes calculated from anatomic landmarks are reliable, valid, and more accurate than those obtained from circumferential measurements based on distance from fingertips.
Resumo:
In the wake of findings from the Bundaberg Hospital and Forster inquiries in Queensland, periodic public release of hospital performance reports has been recommended. A process for developing and releasing such reports is being established by Queensland Health, overseen by an independent expert panel. This recommendation presupposes that public reports based on routinely collected administrative data are accurate; that the public can access, correctly interpret and act upon report contents; that reports motivate hospital clinicians and managers to improve quality of care; and that there are no unintended adverse effects of public reporting. Available research suggests that primary data sources are often inaccurate and incomplete, that reports have low predictive value in detecting outlier hospitals, and that users experience difficulty in accessing and interpreting reports and tend to distrust their findings.