164 resultados para damage function

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that a deficiency in DNA damage repair is associated with increased cancer risk, and exposure to UV radiation is a major risk factor for the development of malignant melanoma. High density of common nevi (moles) is a major risk factor for cutaneous melanoma. A nevus may result from a mutation in a single UV-exposed melanocyte which failed to repair DNA damage in one or more critical genes. XRCC3 and XRCC5 may have an effect on nevus count through their function as components of DNA repair processes that may be involved directly or indirectly in the repair of DNA damage due to UV radiation. This study aims to test the hypothesis that the frequency of flat or raised moles is associated with polymorphism at or near these DNA repair genes, and that certain alleles are associated with less efficient DNA repair, and greater nevus density. Twins were recruited from schools in south eastern Queensland and were examined close to their 12th birthday. Nurses examined each individual and counted all moles on the entire body surface. A 10cM genome scan of 274 families (642 individuals) was performed and microsatellite polymorphisms in XRCC3 and adjacent to XRCC5 were also typed. Linkage and association of nevus count to these loci were tested simultaneously using a structural-equation modeling approach implemented in MX. There is weak evidence for linkage of XRCC5 to a QTL influencing raised mole count, and also weak association. There is also weak evidence for association between flat mole count and XRCC3. No tests were significant after correction for testing multiple alleles, nor were any of the tests for total association significant. If variation in XRCC3 or XRCC5 influences UV sensitivity, and indirectly affects nevus density, then the effects are small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims: We have optimized the isolated perfused mouse kidney (IPMK) model for studying renal vascular and tubular function in vitro using 24-28 g C57BL6J mice; the wild type controls for many transgenic mice. Methods and Results: Buffer composition was optimized for bovine serum albumin concentration (BSA). The effect of adding erythrocytes on renal function and morphology was assessed. Autoregulation was investigated during stepped increases in perfusion pressure. Perfusion for 60 min at 90-110 mmHg with Krebs bicarbonate buffer containing 5.5% BSA, and amino acids produced functional parameters within the in vivo range. Erythrocytes increased renal vascular resistance (3.8 +/- 0.2 vs 2.4 +/- 0.1 mL/min.mmHg, P < 0.05), enhanced sodium reabsorption (FENa = 0.3 +/- 0.08 vs 1.5 +/- 0.7%, P < 0.05), produced equivalent glomerular filtration rates (GFR; 364 +/- 38 vs 400 +/- 9 muL/min per gkw) and reduced distal tubular cell injury in the inner stripe (5.8 +/- 1.7 vs 23.7 +/- 3.1%, P < 0.001) compared to cell free perfusion. The IPMK was responsive to vasoconstrictor (angiotensin II, EC50 100 pM) and vasodilator (methacholine, EC50 75 nM) mediators and showed partial autoregulation of perfusate flow under control conditions over 65-85 mmHg; autoregulatory index (ARI) of 0.66 +/- 0.11. Angiotensin II (100 pM) extended this range (to 65-120 mmHg) and enhanced efficiency (ARI 0.21 +/- 0.02, P < 0.05). Angiotensin II facilitation was antagonized by methacholine (ARI 0.76 +/- 0.08) and papaverine (ARI 0.91 +/- 0.13). Conclusion: The IPMK model is useful for studying renal physiology and pathophysiology without systemic neurohormonal influences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Laryngeal and tongue function was assessed in 28 patients to evaluate the presence, nature, and resolution of superior recurrent laryngeal and hypoglossal nerve damage resulting from standard open primary carotid endarterectomy (CEA). Methods. The laryngeal and tongue function in 28 patients who underwent CEA were examined prospectively with various physiologic (Aerophone II, laryngograph, tongue transducer), acoustic (Multi-Dimensional Voice Program), and perceptual speech assessments. Measures were obtained from all participants preoperatively, and at 2 weeks and at 3 months postoperatively. Results. The perceptual speech assessment indicated that the vocal quality of roughness was significantly more apparent at the 2-week postoperative assessment than preoperatively. However, by the 3-month postoperative assessment these values had returned to near preoperative levels, with no significant difference detected between preoperative and 3-month postoperative levels or between 2-week and 3-month postoperative levels. Both the instrumental assessments of laryngeal function and the acoustic assessment of vocal quality failed to identify any significant difference on any measure across the three assessment periods. Similarly, no significant impairment in tongue strength, endurance, or rate of repetitive tongue movements was detected at instrumental assessment of tongue function. Conclusions: No permanent changes to vocal or tongue function occurred in this group of participants after primary CEA. The lack of any significant long-term laryngeal or tongue dysfunction in this group suggests that the standard open CEA procedure is not associated with high rates of superior recurrent and hypoglossal nerve dysfunction, as previously believed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the hypothesis that the chromosomal genotoxicity of inorganic mercury results from interaction(s) with cytoskeletal proteins. Effects of Hg2+ salts on functional activities of tubulin and kinesin were investigated by determining tubulin assembly and kinesin-driven motility in cell-free systems. Hg2+ inhibits microtubule assembly at concentrations above 1 muM, and inhibition is complete at about 10 muM. In this range, the tubulin assembly is fully ( up to 6 muM) or partially (similar to 6 - 10 muM) reversible. The inhibition of tubulin assembly by mercury is independent of the anion, chloride or nitrate. The no-observed-effect-concentration for inhibition of microtubule assembly in vitro was 1 muM Hg2+, the IC50 5.8 muM. Mercury(II) salts at the IC50 concentrations partly inhibiting tubulin assembly did not cause the formation of aberrant microtubule structures. Effects of mercury salts on the functionality of the microtubule motility apparatus were studied with the motor protein kinesin. By using a gliding assay'' mimicking intracellular movement and transport processes in vitro, HgCl2 affected the gliding velocity of paclitaxel-stabilised microtubules in a clear dose-dependent manner. An apparent effect is detected at a concentration of 0.1 muM and a complete inhibition is reached at 1 muM. Cytotoxicity of mercury chloride was studied in V79 cells using neutral red uptake, showing an influence above 17 muM HgCl2. Between 15 and 20 muM HgCl2 there was a steep increase in cell toxicity. Both mercury chloride and mercury nitrate induced micronuclei concentration-dependently, starting at concentrations above 0.01 muM. CREST analyses on micronuclei formation in V79 cells demonstrated both clastogenic (CREST-negative) and aneugenic effects of Hg2+, with some preponderance of aneugenicity. A morphological effect of high Hg2+ concentrations ( 100 muM HgCl2) on the microtubule cytoskeleton was verified in V79 cells by immuno-fluorescence staining. The overall data are consistent with the concept that the chromosomal genotoxicity could be due to interaction of Hg2+ with the motor protein kinesin mediating cellular transport processes. Interactions of Hg2+ with the tubulin shown by in vitro investigations could also partly influence intracellular microtubule functions leading, together with the effects on the kinesin, to an impaired chromosome distribution as shown by the micronucleus test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liver fatty acid binding protein (L-FABP) contains amino acids that are known to possess antioxidant function. In this study, we tested the hypothesis that L-FABP may serve as an effective endogenous cytoprotectant against oxidative stress. Chang liver cells were selected as the experimental model because of their undetectable L-FABP mRNA level. Full-length L-FABP cDNA was subcloned into the mammalian expression vector pcDNA3.1 (pcDNA-FABP). Chang cells were stably transfected with pc-DNA-FABP or vector (pcDNA3.1) alone. Oxidative stress was induced by incubating cells with 400 mu mol/L H2O2 or by subjecting cells to hypoxia/reoxygenation. Total cellular reactive oxygen species (ROS) was determined using the fluorescent probe DCF. Cellular damage induced by hypoxia/reoxygenation was assayed by lactate dehydrogenase (LDH) release. Expression of L-FABP was documented by regular reverse transcription polyrnerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot. The pcDNA-FABP-transfected cells expressed full-length L-FABP mRNA, which was absent from vector-transfected control cells. Western blot showed expression of 14-kd L-FABP protein in pcDNA-FABP-transfected cells, but not in vector-transfected cells. Transfected cells showed decreased DCF fluorescence intensity under oxidative stress (H2O2 and hypoxia/reoxygenation) conditions versus control in inverse proportion to the level of L-FABP expression. Lower LDH release was observed in the higher L-FABP-expressed cells in hypoxia/reoxygenation experiments. In conclusion, we successfully transfected and cloned a Chang liver cell line that expressed the L-FABP gene. The L-FABP-expressing cell line had a reduced intracellular ROS level versus control. This finding implies that L-FABP has a significant role in oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μ M lead chloride and 0.05 μ M lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μ M lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μ M. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μ M and reached half-maximal inhibition of motility at about 50 μ M. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels. Environ. Mal. Mutagen. 45:346-353, 2005. © 2005 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Among the vertebrates, crocodilians have the most complex anatomy of the heart and outflow channels. Their cardiovascular anatomy may also be the most func­tionally sophisticated, combining as it does the best features of both reptilian and mammalian (and avian) systems. The puzzlingly complex "plumbing" of crocodilians has fascinated ana­tomists and physiologists for a very long time, the first paper being that by Panizza (1833). Gradually, with the application of successive techniques of investigation as they became available, its functional significance has become reasonably clear, and the complexity is now revealed as a cardiovascular system of considerable elegance. In this paper I will review the main anatomical features of the heart and outflow channels, discuss what is known about the way they work, and speculate about the probable functional significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracting human postural information from video sequences has proved a difficult research question. The most successful approaches to date have been based on particle filtering, whereby the underlying probability distribution is approximated by a set of particles. The shape of the underlying observational probability distribution plays a significant role in determining the success, both accuracy and efficiency, of any visual tracker. In this paper we compare approaches used by other authors and present a cost path approach which is commonly used in image segmentation problems, however is currently not widely used in tracking applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100 °C to very defective polycrystalline material. Lower-dose implants (down to 5 × 1013 cm – 2), which are not amorphous but defective after implantation, also anneal poorly up to 1100 °C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100 °C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. ©1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear relationship between work accomplished (W-lim) and time to exhaustion (t(lim)) can be described by the equation: W-lim = a + CP.t(lim). Critical power (CP) is the slope of this line and is thought to represent a maximum rate of ATP synthesis without exhaustion, presumably an inherent characteristic of the aerobic energy system. The present investigation determined whether the choice of predictive tests would elicit significant differences in the estimated CP. Ten female physical education students completed, in random order and on consecutive days, five art-out predictive tests at preselected constant-power outputs. Predictive tests were performed on an electrically-braked cycle ergometer and power loadings were individually chosen so as to induce fatigue within approximately 1-10 mins. CP was derived by fitting the linear W-lim-t(lim) regression and calculated three ways: 1) using the first, third and fifth W-lim-t(lim) coordinates (I-135), 2) using coordinates from the three highest power outputs (I-123; mean t(lim) = 68-193 s) and 3) using coordinates from the lowest power outputs (I-345; mean t(lim) = 193-485 s). Repeated measures ANOVA revealed that CPI123 (201.0 +/- 37.9W) > CPI135 (176.1 +/- 27.6W) > CPI345 (164.0 +/- 22.8W) (P < 0.05). When the three sets of data were used to fit the hyperbolic Power-t(lim) regression, statistically significant differences between each CP were also found (P < 0.05). The shorter the predictive trials, the greater the slope of the W-lim-t(lim) regression; possibly because of the greater influence of 'aerobic inertia' on these trials. This may explain why CP has failed to represent a maximal, sustainable work rate. The present findings suggest that if CP is to represent the highest power output that an individual can maintain for a very long time without fatigue then CP should be calculated over a range of predictive tests in which the influence of aerobic inertia is minimised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kidney function and the role of the cloacal complex in osmoregulation was investigated in estuarine crocodile (Crocodylus porosus) exposed to three environmental salinities: hypo-, iso- and hyperosmotic to the plasma. Plasma homeostasis was maintained over the range of salinities. Antidiuresis occurred with increased salinity. Although urine from the kidneys retained an osmotic pressure between 77% and 82% of the plasma, over 93% and 98% of plasma chloride filtered at the glomeruli was reabsorbed during passage through the kidneys under hypo and hyperosmotic conditions, respectively, and only 64% in iso-osmotic water. The kidneys were the primary site of sodium reabsorption under hypo-and hyperosmotic conditions. Secondary processing of urine during storage in the cloaca varied with salinity. During post renal storage of urine, the difference in urine osmotic pressure increased from -26.1 +/- 15.5 to 35.66 +/- 9.29 mOsM with increased salinity, and potassium concentration of urine increased over 3-fold in C. porosus from freshwater. The almost complete reabsorption of both sodium and chloride under hyperosmotic conditions indicates the necessity for secretory activity by the lingual salt glands. The osmoregulatory response of the kidneys and cloacal complex to environmental salinity is both plastic and complementary. (C) 1998 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1, Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3, In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degrees C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N, coriiceps at 0 degrees C, 4, It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish, Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MinE is an oligomeric protein that, in conjunction with other Min proteins, is required for the proper placement of the cell division site of Escherichia coli. We have examined the self-association properties of MinE by analytical ultracentrifugation and by studies of hetero-oligomer formation in non-denaturing polyacrylamide gets. The self-association properties of purified MinE predict that cytoplasmic MinE is likely to exist as a mixture of monomers and dimers. Consistent with this prediction, the C-terminal MinE(22-88) fragment forms hetero-oligomers with MinE(+) when the proteins are co-expressed. In contrast, the MinE(36-88) fragment does not form MinE(+)/MinE(36-88) hetero-oligomers, although MinE36-88 affects the topological specificity of septum placement as shown by its ability to induce minicell formation when co-expressed with MinE(+) in wild-type cells. Therefore, hetero-oligomer formation is not necessary for the induction of mini-celling by expression of MinE(36-88) in wild-type cells. The interference with normal septal placement is ascribed to competition between MinE(36-88),nd the corresponding domain in the complete MinE protein for a component required for the topological specificity of septal placement.