23 resultados para cytoplasmic inheritance
em University of Queensland eSpace - Australia
Resumo:
Plants accumulate isotopes of carbon at different rates because of discrimination against C-13 relative to C-12. In plants that fix carbon by the C-3 pathway, the amount of discrimination correlates negatively with transpiration efficiency (TE) where TE is the amount of dry matter accumulated per unit water transpired. Therefore, carbon isotope discrimination (Delta) has become a useful tool for selecting genotypes with improved TE and performance in dry environments. Surveys of 161 sunflower (Helianthus spp.) genotypes of diverse origin revealed a large and unprecedented range of genetic variation for Delta (19.5-23.8parts per thousand). A strong negative genetic correlation (r(g)) between TE and Delta (r(g) = -0.87, P < 0.001) was observed in glasshouse studies. Gas exchange measurements of field grown plants indicated that Delta was strongly correlated with stomatal conductance to water vapor (g), (r(g) 0.64, P < 0.01), and the ratio of net assimilation rate (A) to g, (r(g) = 0.86, P < 0.001), an instantaneous measure of TE. Genotype CMSHA89MAX1 had the lowest TE (and highest Delta) of all genotypes tested in these studies and low yields in hybrid combination. Backcrossing studies showed that the TE of this genotype was due to an adverse effect of the MAX1 cytoplasm, which was inherited from the diploid perennial H. maximiliani Schrader. Overall, these studies suggested that there is an excellent opportunity for breeders to develop sunflower germplasm with improved TE. This can be achieved, in part, by avoiding cytoplasms such as the MAX1 cytoplasm.
Resumo:
Classic cadherins are adhesion-activated cell signaling receptors. In particular, homophilic cadherin ligation can directly activate Rho family GTPases and phosphatidylinositol 3-kinase (PI3-kinase), signaling molecules with the capacity to support the morphogenetic effects of these adhesion molecules during development and disease. However, the molecular basis for cadherin signaling has not been elucidated, nor is its precise contribution to cadherin function yet understood. One attractive hypothesis is that cadherin-activated signaling participates in stabilizing adhesive contacts ( Yap, A. S., and Kovacs, E. M. ( 2003) J. Cell Biol. 160, 11-16). We now report that minimal mutation of the cadherin cytoplasmic tail to uncouple binding of p120-ctn ablated the ability of E-cadherin to activate Rac. This was accompanied by profound defects in the capacity of cells to establish stable adhesive contacts, defects that were rescued by sustained Rac signaling. These data provide direct evidence for a role of cadherin-activated Rac signaling in contact formation and adhesive stabilization. In contrast, cadherin-activated PI3-kinase signaling was not affected by loss of p120-ctn binding. The molecular requirements for E-cadherin to activate Rac signaling thus appear distinct from those that stimulate PI3-kinase, and we postulate that p120-ctn may play a central role in the E-cadherin-Rac signaling pathway.
Resumo:
Comparison of initial Pb-isotope signatures of several early Archaean (3.65-3.82 Ga) lithologies (orthogneisses and metasediments) and minerals (feldspar and galena) documents the existence of substantial isotopic heterogeneity in the early Archaean, particularly in the Pb-207/Pb-204 ratio. The magnitude of isotopic variability at 3.82-3.65 Ga requires source separation between 4.3 and 4.1 Ga, depending on the extent of U/Pb fractionation possible in the early Earth. The isotopic heterogeneity could reflect the coexistence of enriched and depleted mantle domains or the separation of a terrestrial protocrust with a U-238/Pb-204 (mu) that was ca. 20-30% higher than coeval mantle. We prefer this latter explanation because the high-p signature is most evident in metasediments (that formed at the Earth's surface). This interpretation is strengthened by the fact that no straightforward mantle model can be constructed for these high-mu lithologies without violating bulk silicate Earth constraints. The Pb-isotope evidence for a long-lived protocrust complements similar Hf-isotope data from the Earth's oldest zircons, which also require an origin from an enriched (low Lu/Hf) environment. A model is developed in which greater than or equal to3.8-Ga tonalite and monzodiorite gneiss precursors (for one of which we provide zircon U-Pb data) are not mantle-derived but formed by remelting or differentiation of ancient (ca. 4.3 Ga) basaltic crust which had evolved with a higher U/Pb ratio than coeval mantle in the absence of the subduction process. With the initiation of terrestrial subduction at, we propose, ca. 3.75 Ga, most of the greater than or equal to3.8-Ga basaltic shell (and its differentiation products) was recycled into the mantle, because of the lack of a stabilising mantle lithosphere. We argue that the key event for preservation of all greater than or equal to3.8-Ga terrestrial crust was the intrusion of voluminous granitoids immediately after establishment of global subduction because of complementary creation of a lithospheric keel. Furthermore, we argue that preservation of !3.8-Ga material (in situ rocks and zircons) globally is restricted to cratons with a high U/Pb source character (North Atlantic, Slave, Zimbabwe, Yilgarn, and Wyoming), and that the Pb-isotope systematics of these provinces are ultimately explained by reworking of material that was derived from ca. 4.3 Ga (i.e. Hadean) basaltic crust.
Resumo:
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53,71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.
Resumo:
The protective antigen (PA) of anthrax toxin binds to a cell surface receptor, undergoes heptamerization, and binds the enzymatic subunits, the lethal factor (LF) and the edema factor (EF). The resulting complex is then endocytosed. Via mechanisms that depend on the vacuolar ATPase and require membrane insertion of PA, LF and EF are ultimately delivered to the cytoplasm where their targets reside. Here, we show that membrane insertion of PA already occurs in early endosomes, possibly only in the multivesicular regions, but that subsequent delivery of LF to the cytoplasm occurs preferentially later in the endocytic pathway and relies on the dynamics of internal vesicles of multivesicular late endosomes.
Resumo:
The research presented indicates that lucerne crown and root rot caused by Stagonospora meliloti is prevalent in southern New South Wales, whereas Acrocalymma medicaginis is the more commonly observed pathogen in Queensland. Although both pathogens cause reddening of internal root and crown tissue of lucerne, they can be distinguished by symptomatology. S. meliloti causes a diffuse red blotching of the internal tissue accompanied by the presence of an external lesion, whereas A. medicaginis causes red streaking at the extremity of wedge-shaped, dry-rotted tissue. Inoculation of propagules of a susceptible lucerne clone indicated that S. meliloti was the more aggressive pathogen. Although A. medicaginis does not cause leaf disease, there was a strong relationship between the leaf and root reaction of clones to S. meliloti. Inheritance of resistance to S. meliloti in lucerne appeared to be conditioned by a single dominant gene, based on segregations observed in S-1 and F-1 populations, but not in a backcross population from the same family where an excess of susceptible individuals (74% v. expected of 50%) was obtained in a cross of a resistant F-1 individual to the susceptible parent. Resistance appears to be highly heritable, however, and amenable to population improvement by breeding. A conclusion of the research is that breeding for resistance to S. meliloti for lucernes to be grown in southern Australia would appear to be a worthwhile objective. Presently, no highly resistant cultivars exist anywhere in the world.
Resumo:
The GH receptor (GHR) is essential for normal postnatal growth and development, and the molecular basis of GHR action has been studied intensively. Clinical case studies and more recently mouse models have revealed the extensive phenotype of impaired GH action. We recently reported two new mouse models, possessing cytoplasmic truncations at position 569 (plus Y539/545-F) and 391, which were created to identify functional subdomains within the cytoplasmic signaling domain. In the homozygous state, these animals show progressively impaired postnatal growth coupled with complex changes in gene expression. We describe here an extended phenotype analysis encompassing the heterozygote state to identify whether single copies of these mutant receptors bring about partial or dominant-negative phenotypes. It appears that the retention of the ubiquitin-dependent endocytosis motif the N-terminal cytoplasmic domain permits turnover of these mutant receptors because no dominant-negative phenotype is seen. Nonetheless, we do observe partial impairment of postnatal growth in heterozygotes supporting limited haploinsufficiency. Reproductive function is impaired in these models in a progressive manner, in parallel with loss of signal transducer and activator of transcription-5 activation ability. In summary, we describe a more comprehensive phenotypic analysis of these mouse models, encompassing overall and longitudinal body growth, reproductive function, and hormonal status in both the heterozygote and homozygote state. Our results suggest that patients expressing single copies of similarly mutated GHRs would not display an obvious clinical phenotype.
Resumo:
The prostate-specific antigen-related serine protease gene, kallikrein 4 (KLK4), is expressed in the prostate and, more importantly, overexpressed in prostate cancer. Several KLK4 mRNA splice variants have been reported, but it is still not clear which of these is most relevant to prostate cancer. Here we report that, in addition to the full-length KLK4 (KLK4-254) transcript, the exon 1 deleted KLK4 transcripts, in particular, the 5'-truncated KLK4-205 transcript, is expressed in prostate cancer. Using V5/His6 and green fluorescent protein (GFP) carboxy terminal tagged expression constructs and immunocytochemical approaches, we found that hK4-254 is cytoplasmically localized, while the N-terminal truncated hK4-205 is in the nucleus of transfected PC-3 prostate cancer cells. At the protein level, using anti-hK4 peptide antibodies specific to different regions of hK4-254 (N-terminal and C-terminal), we also demonstrated that endogenous hK4-254 (detected with the N-terminal antibody) is more intensely stained in malignant cells than in benign prostate cells, and is secreted into seminal fluid. In contrast, for the endogenous nuclear-localized N-terminal truncated hK4-205 form, there was less difference in staining intensity between benign and cancer glands. Thus, KLK4-254/hK4-254 may have utility as an immunohistochemical marker for prostate cancer. Our studies also indicate that the expression levels of the truncated KLK4 transcripts, but not KLK4-254, are regulated by androgens in LNCaP cells. Thus, these data demonstrate that there are two major isoforms of hK4 (KLK4-254/hK4-254 and KLK4-205/hK4-205) expressed in prostate cancer with different regulatory and expression profiles that imply both secreted and novel nuclear roles.
Resumo:
Objective To determine the mode of inheritance of congenital proportionate dwarfism in Angus and Angus crossbred cattle, initially detected in two commercial beef herds in northern New South Wales. Design Matings of normal carrier sires to unrelated cows of diverse breeds, and of one carrier sire to his unaffected daughters. An unrelated Piedmontese bull was also mated to unaffected daughters of the carrier sires. Procedure Two carrier Angus bulls and nine unaffected daughters, all of whom were completely indistinguishable from normal animals, were purchased for controlled breeding studies under known nutritional and disease conditions. Affected and carrier individuals were examined for the presence of obvious chromosomal abnormalities. Results Angus dwarfism has been successfully reproduced under controlled experimental conditions over successive years using unrelated dams and is undoubtedly heritable. The high frequency of occurrence of affected individuals (23/61 = 0.38 +/- .06) among the progeny of matings of the Angus sires to unrelated females of diverse breeding is not compatible with recessive inheritance, because of the negligible frequency of proportionate dwarfism in the breeds of the dams. Both paternal and maternal transmission of the defect was demonstrated, so that imprinting in the strict sense of a gene that is only expressed when received from the male parent appears not to be involved. Tested individuals showed no evidence of gross chromosomal abnormality. Dominant autosomal inheritance with incomplete penetrance was indicated by the lack of expression of the defective gene in the two Angus sires and in three unaffected daughters who produced dwarf calves from matings to the Piedmontese bull. Conclusions The mode of inheritance is that of a single autosomal dominant gene with a penetrance coefficient of 0.75 +/- 0.12, estimated from the observed incidence of 23/61 affected offspring of the two carrier Angus bulls mated to unrelated dams. Simple genetic models involving either (i) an unstable mutant which changes at high frequency to the expressed dominant dwarfing allele during gametogenesis, or (ii) a dominant allele with penetrance determined by an unlinked modifying locus, are shown to be compatible with the experimental data. Both models indicate that penetrance of the dwarfing gene may possibly be higher in matings involving carrier daughters of the two Angus bulls.
Resumo:
A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.
Resumo:
Plants incorporate isotopes of carbon into their tissue at different rates because of discrimination against 13C relative to 12C during photosynthesis. This difference in discrimination has been negatively correlated with transpiration efficiency (TE) in many C3 species and so, carbon isotope discrimination (Δ) of leaf tissues has been proposed as a potential tool for selecting genotypes with improved performance under water limited conditions. The relationship between Δ and TE in sunflower has been described previously using diverse genotypes, but this relationship has not been investigated with material selected from a segregating population. In this study, the TE of twenty recombinant inbred lines from a population (HAR4 x SA52) segregating for Δ was evaluated in a rainout shelter experiment. A strong negative genetic correlation between TE and Δ was observed (rg = -0.58), confirming previous studies of sunflower with unrelated lines. In addition, TE was strongly correlated to plant height at the final harvest (rg = 0.64) and TDW (rg = 0.58), and moderately correlated to SLW (rg = 0.46) and SPAD (rg = 0.21) but not leaf number (rg = 0.02). Estimates of narrow sense heritability of TE and Δ were very high (0.82 and 0.77, respectively) suggesting that selection for these traits could occur in early generations of segregating populations. Grain yield evaluations under field conditions of hybrids contrasting for Δ showed that low Δ (high TE) hybrids had a yield advantage between 22-35% in dry environments where the yield was less than 2t/ha. While this level of yield advantage may not be realized in commercial breeding programs, computer simulations suggest that 10-15% yield improvements may be possible. Low Δ material selected from the population HAR4 x SA52 has been distributed to private seed companies for further evaluation.