2 resultados para crowdsourcing, urban-sensing, sensori android, database
em University of Queensland eSpace - Australia
Resumo:
The majority of the world's population now resides in urban environments and information on the internal composition and dynamics of these environments is essential to enable preservation of certain standards of living. Remotely sensed data, especially the global coverage of moderate spatial resolution satellites such as Landsat, Indian Resource Satellite and Systeme Pour I'Observation de la Terre (SPOT), offer a highly useful data source for mapping the composition of these cities and examining their changes over time. The utility and range of applications for remotely sensed data in urban environments could be improved with a more appropriate conceptual model relating urban environments to the sampling resolutions of imaging sensors and processing routines. Hence, the aim of this work was to take the Vegetation-Impervious surface-Soil (VIS) model of urban composition and match it with the most appropriate image processing methodology to deliver information on VIS composition for urban environments. Several approaches were evaluated for mapping the urban composition of Brisbane city (south-cast Queensland, Australia) using Landsat 5 Thematic Mapper data and 1:5000 aerial photographs. The methods evaluated were: image classification; interpretation of aerial photographs; and constrained linear mixture analysis. Over 900 reference sample points on four transects were extracted from the aerial photographs and used as a basis to check output of the classification and mixture analysis. Distinctive zonations of VIS related to urban composition were found in the per-pixel classification and aggregated air-photo interpretation; however, significant spectral confusion also resulted between classes. In contrast, the VIS fraction images produced from the mixture analysis enabled distinctive densities of commercial, industrial and residential zones within the city to be clearly defined, based on their relative amount of vegetation cover. The soil fraction image served as an index for areas being (re)developed. The logical match of a low (L)-resolution, spectral mixture analysis approach with the moderate spatial resolution image data, ensured the processing model matched the spectrally heterogeneous nature of the urban environments at the scale of Landsat Thematic Mapper data.
Resumo:
As end-user computing becomes more pervasive, an organization's success increasingly depends on the ability of end-users, usually in managerial positions, to extract appropriate data from both internal and external sources. Many of these data sources include or are derived from the organization's accounting information systems. Managerial end-users with different personal characteristics and approaches are likely to compose queries of differing levels of accuracy when searching the data contained within these accounting information systems. This research investigates how cognitive style elements of personality influence managerial end-user performance in database querying tasks. A laboratory experiment was conducted in which participants generated queries to retrieve information from an accounting information system to satisfy typical information requirements. The experiment investigated the influence of personality on the accuracy of queries of varying degrees of complexity. Relying on the Myers–Briggs personality instrument, results show that perceiving individuals (as opposed to judging individuals) who rely on intuition (as opposed to sensing) composed queries more accurately. As expected, query complexity and academic performance also explain the success of data extraction tasks.