8 resultados para crop pest
em University of Queensland eSpace - Australia
Resumo:
Ballooning is a form of aerial movement practiced by most miniature and some adult spiders. Very few studies have investigated the composition and rate of spider ballooning in Australian agroecosystems. Water traps were used to compare ballooning rates in irrigated soybean crops and nearby non-crop areas in southeast Queensland over two summer seasons. The highest ballooning rate (14.8 spiders/m(2) per day) was recorded in a soybean field, non-crop areas (7.0 spiders/m(2) per day) and a dry land mungbean field (6.8 spiders/m(2) per day) having similar rates. Spider ballooning in soybean increased throughout the season and showed three peaks and intervening troughs. A similar pattern in ballooning peaks was observed in non-crop areas however the numbers were lower. Peaks in ballooning activity where synchronised across habitat types and some spider groups. Composition of the ballooning fauna was different from that of the ground-dwelling fauna, some families being present in both. Ballooning is an important behaviour in terms of population dynamics for a number of spider groups in soybean and the implications for pest control are discussed. (C) 2004 Elsevier BN. All rights reserved.
Resumo:
Maximizing the contribution of endemic natural enemies to integrated pest management (IPM) programs requires a detailed knowledge of their interactions with the target pest. This experimental field study evaluated the impact of the endemic natural enemy complex of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) on pest populations in commercial cabbage crops in southeastern Queensland, Australia. Management data were used to score pest management practices at experimental sites on independent Brassica farms practicing a range of pest management strategies, and mechanical methods of natural enemy exclusion were used to assess the impact of natural enemies on introduced cohorts of P. xylostella at each site. Natural enemy impact was greatest at sites adopting IPM and least at sites practicing conventional pest management strategies. At IPM sites, the contribution of natural enemies to P. xylostella mortality permitted the cultivation of marketable crops with no yield loss but with a substantial reduction in insecticide inputs. Three species of larval parasitoids (Diadegma semiclausum Hellen [Hymenoptera: Ichneumonidae], Apanteles ippeus Nixon [Hymenoptera: Braconidae], and Oomyzus sokolowskii Kurdjumov [Hymenoptera: Eulophidae]) and one species of pupal parasitoid Diadromus collaris Gravenhorst (Hymenoptera: Ichneumonidae) attacked immature P. xylostella. The most abundant groups of predatory arthropods caught in pitfall traps were Araneae (Lycosidae) > Coleoptera (Carabidae, Coccinelidae, Staphylinidae) > Neuroptera (Chrysopidae) > Formicidae, whereas on crop foliage Araneae (Clubionidae, Oxyopidae) > Coleoptera (Coccinelidae) > Neuroptera (Chrysopidae) were most common. The abundance and diversity of natural enemies was greatest at sites that adopted IPM, correlating greater P. xylostella mortality at these sites. The efficacy of the natural enemy complex to pest mortality under different pest management regimes and appropriate strategies to optimize this important natural resource are discussed.
Resumo:
1 The herbivorous bug Heteropsylla cubana Crawford (Homoptera: Psyllidae) is a pest of the cattle fodder crop Leucaena (Leguminosae: Mimosoideae). The interaction between the psyllid and three varieties of its Leucaena host plant was investigated in relation to the apparent resistance of some Leucaena varieties (Leucaena leucocephala, Leucaena pallida and their hybrids) to attack. 2 Field trials demonstrated that adult psyllids distinguished among the different varieties of Leucaena over a distance, and were attracted to L. leucocephala in significantly higher numbers than to L. pallida or to the hybrid. Pesticide treatment increased the attractiveness of Leucaena plants, even of those deemed to be psyllid resistant. Numbers of psyllid eggs and nymphs, sampled in the field, reflect the arrival rates of adults at the three plant varieties. 3 Wavelength reflectance data of the three Leucaena varieties were not significantly different from one another, suggesting that psyllids cannot discriminate among the three plants using brightness or wavelength cues. There was a differential release of caryophyllene among the three varieties. Release of caryophyllene in L. leucocephala and the hybrid appeared to be influenced by environmental conditions. 4 Experiments demonstrated that caryophyllene (at least on its own) did not influence the behaviour of leucaena psyllids in relation to leucaena plants. 5 The results suggest that host plant volatiles cannot be dismissed as significant in the interaction between the leucaena psyllid and its Leucaena host plants. Further avenues for investigation are recommended and these are related to novel ways of understanding resistance in insect plant inter-relationships.
Resumo:
Understanding how insect pests forage on their food plants can help optimize management strategies. Helicoverpa armigera (Hubner) (Lep., Noctuidae) is a major polyphagous pest of agricultural crops worldwide. The immature stages feed and forage on crops at all stages of plant development, damaging fruiting and non-fruiting structures, yet very little is known about the influence of host type or stage on the location and behaviour of larvae. Through semi-continuous observation, we evaluated the foraging (movement and feeding) behaviours of H. armigera first instar larvae as well as the proportion of time spent at key locations on mungbean [Vigna radiata (L.) Wilczek] and pigeon pea [Cajanus cajan (L.) Millspaugh] of differing developmental stages: seedling- and mature (flowering/pod fill)-stage plants. Both host type and age affected the behaviour of larvae. Larvae spent more time in the upper parts of mature plants than on seedlings and tended to stay at the top of mature plants if they moved there. This difference was greater in pigeon pea than in mungbean. The proportion of time allocated to feeding on different parts of a plant differed with host and age. More feeding occurred in the top of mature pigeon pea plants but did not differ between mature and seedling mungbean plants. The duration of key behaviours did not differ between plant ages in either crop type and was similar between hosts although resting bouts were substantially longer on mungbeans. Thus a polyphagous species such as H. armigera does not forage in equivalent ways on different hosts in the first instar stage.
Resumo:
Lucerne (Medicago sativa) has been suggested as an ideal refuge habitat as part of an integrated pest management (IPM) program because it harbours high numbers of beneficial arthropods. Whether or not cutting of lucerne encourages the movement of these beneficials into adjacent target crops is unknown. Vacuum samples were used to determine the effects of cutting lucerne on arthropod abundance (pests and predators) within lucerne and adjacent soybean (Glycine max) crops. Vacuum-sample collections of arthropods were conducted before and after lucerne cutting on seven occasions in four fields over two seasons. In the lucerne, 10 m by 1 m strips parallel to the crop interface were sampled at 5, 10, 15, 20 and 30 m from the interface. In the soybean, 10 m of row were sampled at the same distances from the crop interface. The abundance of predators in lucerne was reduced immediately after cutting at all distances from the interface. Predator abundance in soybean did not show any change. The cutting of lucerne significantly reduced pest numbers within the lucerne but had little effect on pest abundance in the adjacent soybean. The temporal pattern in pest and predator abundance was very different for each field sampled. Generally, arthropods decreased in abundance after cutting and gradually increased as the lucerne grew back. In soybeans, arthropod numbers fluctuated regardless of the cutting of the lucerne. Cutting of lucerne alone does not guarantee movement of predators into the adjacent target crop. The presence of lucerne fields within a cropping area may have some impact on regional predator populations, and so still be useful for IPM programs, but this has yet to be tested critically.
Resumo:
1. The spatial heterogeneity of predator populations is an important component of ecological theories pertaining to predator-prey dynamics. Most studies within agricultural fields show spatial correlation (positive or negative) between mean predator numbers and prey abundance across a whole field over time but generally ignore the within-field spatial dimension. We used explicit spatial mapping to determine if generalist predators aggregated within a soybean field, the size of these aggregations and if predator aggregation was associated with pest aggregation, plant damage and predation rate. 2. The study was conducted at Gatton in the Lockyer Valley, 90 km west of Brisbane, Australia. Intensive sampling grids were used to investigate within-field spatial patterns. The first row of each grid was located in a lucerne field (10 m from interface) and the remaining rows were in an adjacent soybean field. At each point on the grid the abundance of foliage-dwelling and ground-dwelling pests and predators was measured, predation rates [using sentinel Helicoverpa armigera (Hubner) egg cards] and plant damage were estimated. Eight grids were sampled across two summer cropping seasons (2000/01, 2001/02). 3. Predators exhibited strong spatial patterning with regions of high and low abundance and activity within what are considered to be uniform soybean fields. Ground-dwelling and foliage-dwelling predators were often aggregated in patches approximately 40 m across. 4. Lycosidae (wolf spiders) displayed aggregation and were consistently more abundant within the lucerne, with a decreasing trap catch with distance from the lucrene/soybean interface. This trend was consistent between subsequent grids in a single field and between fields. 5. The large amount of spatial variability in within-field arthropod abundance (pests and predators) and activity (egg predation and plant damage) indicates that whole field averages were misleading. This result has serious implications for sampling of arthropod abundance and pest management decision-making based on scouting data. 6. There was a great deal of temporal change in the significant spatial patterns observed within a field at each sampling time point during a single season. Predator and pest aggregations observed in these fields were generally not stable for the entire season. 7. Predator aggregation did not correlate consistently with pest aggregation, plant damage or predation rate. Spatial patterns in predator abundance were not associated consistently with any single parameter measured. The most consistent positive association was between foliage-dwelling predators and pests (significant in four of seven grids). Inferring associations between predators and prey based on an intensive one-off sampling grid is difficult, due to the temporal variability in the abundance of each group. 8. Synthesis and applications. This study demonstrated that generalist predator populations are rarely distributed randomly and field edges and adjacent crops can have an influence on within-field predator abundance. This must be considered when estimating arthropod (pest and predator) abundance from a set of samples taken at random locations within a field.