17 resultados para craniofacial malformation
em University of Queensland eSpace - Australia
Resumo:
We review a single surgeon and surgical centre's experience with congenital cystic adenomatoid malformation of the lung (CCAML) in relation to clinical spectrum, operative experience, and postoperative course. A retrospective hospital record review was done on surgically treated cases of CCAML over a 10-year period, focusing on number with antenatal diagnosis, spectrum of postnatal presentation, type of surgery performed, and outcome. Forty-seven patients from birth to 14 years of age underwent surgery for CCAML. Antenatal diagnosis (ante) was made in 30 cases. Of these, 10 became symptomatic before surgery. Six of the 17 postnatally-diagnosed (pnd) cases were an asymptomatic incidental finding. Overall, 16 were symptomatic in the 1st year of life, and five were symptomatic beyond 1 year of age. Symptoms varied from respiratory distress (seven ante, six pnd) to chronic cough (three, and recurrent chest infection (three ante, two pnd). All preoperative diagnoses were confirmed with chest CT. Most patients (25) were operated on before 3 months of age. Eleven were operated on in the first 2 weeks of life as emergency surgery for respiratory distress. The most common lobe involved was the right upper lobe (16), and lobectomy was performed in 42 cases, segmentectomy in four, and pneumonectomy in one. Seventeen cases were extubated immediately postoperatively; 29 required postoperative ventilation overnight, and nine needed more prolonged ventilation. Early postoperative complications included pneumothorax (two), pleural effusion (one), and chylous effusion (one). Late complications included recurrence in three cases (all segmentectomy), who then subsequently underwent lobectomy. There was one death from respiratory failure. Because there is an increasing trend in the detection of asymptomatic antenatally-diagnosed CCAML, consideration of early surgical excision to prevent complications is suggested by our series. CT scanning is mandatory for postnatal evaluation because chest x-ray could be normal. Safe elective excision after 3 months is supported by our low morbidity and less need for postoperative ventilation. Lobectomy is the procedure of choice to prevent recurrence.
Resumo:
Growth hormone (GH) secretion affects bone and cartilage physiology. This study investigated the effect of GH on the size of the craniofacial structures and their angular relationship. Three different models of mice with a genetically altered GH axis were used: GH excess (giant), dwarf GH antagonist (dwarf-Ant), and dwarf GH receptor knockout (dwarf-KO) mice. Each model was compared with the corresponding wild type (Wt). Five craniofacial distances were analysed: craniofacial length, upper face height, mandibular anterior height, mandibular ramus length, and mandibular corpus length. In addition, upper and lower incisor lengths and four angular relationships, nasal bone with cranial base, maxillary plane with cranial base, mandibular plane with cranial base, and the angle of the mandible, were determined. Data were analysed by one-way ANOVA. Craniofacial length, upper face height and mandibular corpus length were significantly increased in the giant mice and significantly reduced in the dwarf mice. Mandibular anterior height and mandibular ramus length were significantly affected in the dwarf-KO mice but not in the giant mice. The length of both the upper and lower incisors was significantly increased and reduced in the giant and dwarf-KO mice, respectively. In addition, the angle of the mandible was significantly increased in the giant mice and significantly reduced in the dwarf mice. It is concluded that GH plays a major role in the growth and development of the craniofacial complex by directly and indirectly modulating the size and the angular relationships of the craniofacial structures, including the incisor teeth.
Resumo:
The bioactivity of three methacryloyloxyethyl phosphate (MOEP) grafted expanded polytetrafluoroethylene (ePTFE) membranes with varying surface coverage as well as unmodified ePTFE was investigated through a series of in vitro tests: calcium phosphate (CaP) growth in simulated body fluid (SBF), serum protein adsorption, and a morphology and attachment study of human osteoblast-like SaOS-2 cells. The graft copolymers were prepared by means of gamma irradiation induced grafting and displayed various surface morphologies and wettabilities depending on the grafting conditions used. Unmodified ePTFE did not induce nucleation of Cal? minerals, whereas all the grafted membranes revealed the growth of Cal? minerals after 7 days immersion in SBF. The sample with lowest surface grafting yield (24% coverage), a smooth graft morphology and relatively high hydrophobicity (theta(adv) = 120 degrees, theta(rec) = 80 degrees) showed carbonated hydroxyapatite growth covering the surface. On the other hand, the samples with high surface grafting yield (76% and 100%), a globular graft morphology and hydrophilic surfaces (theta(adv) = 60 degrees and 80 degrees, theta(rec) = 25 degrees and 15 degrees, respectively) exhibited irregular growth of non-apatitic Cap minerals. Irreversibly adsorbed protein measured after a 1 h immersion in serum solution was quantified by the amount of nitrogen on the surface using XPS, as well as by weight increase. All grafted membranes adsorbed 3-6 times more protein than the unmodified membrane. The sample with the highest surface coverage adsorbed the most protein. Osteoblast-like SaOS-2 cells cultured for 3 h revealed significantly higher levels of cell attachment on all grafted membranes compared to unmodified ePTFE. Although the morphology of the cells was heterogeneous, in general, the higher grafted surfaces showed a much better cell morphology than both the low surface-grafted and the control unmodified sample. The suite of in vitro tests confirms that a judicious choice of grafted monomer such as the phosphate-containing methacrylate monomer (MOEP) significantly improves the bioactivity of ePTFE in vitro. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Growth hormone (GH) stimulates mandibular growth but its effect on the mandibular condylar cartilage is not well. understood. Objective: This study was designed to understand the influence of GH on mitotic activity and on chondrocytes maturation. The effect of GH on cartilage thickness was also determined. Design: An animal model witt differences in GH status was determined by comparing mutant Lewis dwarf rats with reduced pituitary GH synthesis (dwarf), with normal rats and dwarf animals treated with GH. Six dwarf rats were injected with GH for 6 days, while other six normal rats and six dwarf rats composed other two groups. Mandibular condylar tissues were processed and stained for Herovici's stain and immunohistochemistry, for proliferating cell nuclear antigen (PCNA) and alkaline phosphatase (ALP). Measurements of cartilage thickness as well as the numbers of immunopositive cells for each antibody were analysed by one-way analysis of variance. Results: Cartilage thickness was significantly reduced in the dwarf animals treated with GH. PCNA expression was significant lower in the dwarf rats, but significantly increased when these animals were treated with GH. ALP expression was significant higher in the dwarf animals, while it was significantly reduced in the dwarf animals treated with GH. Conclusions: The results from this study showed that GH stimulates mitotic activity and delays cartilage cells maturation in the mandibular condyte. This effect at the cellular Level may produce changes in the cartilage thickness. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Cotard syndrome is characterized by the delusion where an individual insists that he has died or part of his body has decayed. Although described classically in schizophrenia and bipolar disorder, physical disorders including migraine, tumour and trauma have also been associated with the syndrome. Two new cases are described here, the one associated with arteriovenous malformations and the other with probable multiple sclerosis. The delusion has been embarrassing to each patient. Study of such cases may have wider implications for the understanding of the psychotic interpretation of body image, for example that occurring in anorexia nervosa.
Resumo:
Objective - To study the possible dose dependence of the foetal malformation rate after exposure to sodium valproate in pregnancy Methods - Analysis of records of all foetuses in the Australian Registry of Antiepileptic Drugs in Pregnancy exposed to valproate, to carbamazepine, lamotrigine or phenytoin in the absence of valproate, and to no antiepileptic drugs. Results - The foetal malformation rate was higher (P < 0.05) in the 110 foetuses exposed to valproate alone (17.1%), and in the 165 exposed to valproate, whether alone or together with the other antiepileptic drugs (15.2%), than in the 297 exposed to the other drugs without valproate (2.4%). It was also higher (P < 0.10) than in the 40 not exposed to antiepileptic drugs (2.5%). Unlike the situation for the other drugs, the malformation rate in those exposed to valproate increased with increasing maternal drug dosage (P < 0.05). The rate was not altered by simultaneous exposure to the other drugs. Valproate doses exceeding 1400 mg per day seemed to be associated with a more steeply increasing malformation rate than at lower doses and with a different pattern of foetal malformations. Conclusion - Foetal exposure to valproate during pregnancy is associated with particularly high, and dose-dependent risks of malformation compared with other antiepileptic drugs, and may possibly involve different teratogenetic mechanisms.
Resumo:
Background. A disintegrin and metalloproteinase with thrombospondin motifs 1, Adamts-1, is important for the development and function of the kidney. Mice lacking this protein present with renal lesions comprising enlarged calyces, and reduced cortex and medulla layers. Our current findings are consistent with the defect occurring due to a developmental dysgenesis. Methods. We generated Adamts-1 null mice, and further investigated their kidney phenotype in a time course study ranging from E18.5 to 12 months of age. Immunohistochemistry was used to assess the localization of type IV collagen, TGF-beta and F4/80-positive macrophages in the kidneys of Adcants-1 null mice compared to wild-type control animals. The expression of Adamts-1 mRNA was determined in metanephric kidney explants by in situ hybridization. Results. Adamts-1 null mice have a gross kidney defect. At day 18.5 of gestation, the Adcants-1 null kidney has a normal appearance but at birth when the kidney begins to function, the defect becomes evident. During development of the kidney Adamts-1 expression was specifically detected in the developing loops of Henle, as well as in the proximal and distal convoluted tubules. Expression was not detected in the ureter, ureteric bud or its derivatives as had been previously suggested. At 6 months and I year of age, the Adamts-1 null mice displayed interstitial fibrosis in the cortical and medullary regions of the kidney. At I year of age, the Adamts-1 null mice displayed mild interstitial matrix expansion associated with increased collagen type IV expression, without apparent tubular dilatation, compared to wild-type animals. Immunohistochemical analysis demonstrated TGF-beta protein localized to infiltrating macrophages and glomeruli of Adamts-1 null mice. Conclusions. Adamts-1 is required for the normal development of the kidney. The defect observed in its absence results from a dysgenic malformation affecting the medulla that becomes apparent at birth, once the kidneys start to function.
Resumo:
The Australian Registry of Antiepileptic Drug Use in Pregnancy includes 172 instances in which women took sodium valproate, with or without other antiepileptic drugs, during pregnancy. These pregnancies resulted in a substantially higher (p < 0.05) rate of malformed offspring (15.1%) compared with 348 pregnant women who took antiepileptic drugs other than valproate (2.3%) and 40 pregnancies in epileptic women who took no antiepileptic drugs (2.5%). At valproate doses of 1400 mg and below per day, the mean rate of pregnancies with fetal malformations was 6.42% and did not seem to be dose-dependent. At higher valproate doses, the mean rate of pregnancy with fetal malformation was 33.9% and appeared to increase with increasing drug dosage. This finding suggests the need for reappraisal of the use of valproate in women who may become pregnant or are pregnant whilst the drug is taken. The therapeutic policy adopted may depend on whether valproate doses below 1400 mg per day are regarded as safe for the fetus. This study indicates that the risk of malformation associated with such doses was just statistically significantly (p < 0.05) higher than that associated with other antiepileptic drugs. Various possible clinical scenarios are discussed.
Resumo:
In the English literature, facial approximation methods have been commonly classified into three types: Russian, American, or Combination. These categorizations are based on the protocols used, for example, whether methods use average soft-tissue depths (American methods) or require face muscle construction (Russian methods). However, literature searches outside the usual realm of English publications reveal key papers that demonstrate that the Russian category above has been founded on distorted views. In reality, Russian methods are based on limited face muscle construction, with heavy reliance on modified average soft-tissue depths. A closer inspection of the American method also reveals inconsistencies with the recognized classification scheme. This investigation thus demonstrates that all major methods of facial approximation depend on both face anatomy and average soft-tissue depths, rendering common method classification schemes redundant. The best way forward appears to be for practitioners to describe the methods they use (including the weight each one gives to average soft-tissue depths and deep face tissue construction) without placing them in any categorical classificatory group or giving them an ambiguous name. The state of this situation may need to be reviewed in the future in light of new research results and paradigms.
Resumo:
In the past, the accuracy of facial approximations has been assessed by resemblance ratings (i.e., the comparison of a facial approximation directly to a target individual) and recognition tests (e.g., the comparison of a facial approximation to a photo array of faces including foils and a target individual). Recently, several research studies have indicated that recognition tests hold major strengths in contrast to resemblance ratings. However, resemblance ratings remain popularly employed and/or are given weighting when judging facial approximations, thus indicating that no consensus has been reached. This study aims to further investigate the matter by comparing the results of resemblance ratings and recognition tests for two facial approximations which clearly differed in their morphological appearance. One facial approximation was constructed by an experienced practitioner privy to the appearance of the target individual (practitioner had direct access to an antemortem frontal photograph during face construction), while the other facial approximation was constructed by a novice under blind conditions. Both facial approximations, whilst clearly morphologically different, were given similar resemblance scores even though recognition test results produced vastly different results. One facial approximation was correctly recognized almost without exception while the other was not correctly recognized above chance rates. These results suggest that resemblance ratings are insensitive measures of the accuracy of facial approximations and lend further weight to the use of recognition tests in facial approximation assessment. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cdca4 (Hepp) was originally identified as a gene expressed specifically in hematopoietic progenitor cells as opposed to hematopoietic stem cells. More recently, it has been shown to stimulate p53 activity and also lead to p53-independent growth inhibition when overexpressed. We independently isolated the murine Cdca4 gene in a genomic expression-based screen for genes involved in mammalian craniofacial development, and show that Cdca4 is expressed in a spatio-temporally restricted pattern during mouse embryogenesis. In addition to expression in the facial primordia including the pharyngeal arches, Cdca4 is expressed in the developing limb buds, brain, spinal cord, dorsal root ganglia, teeth, eye and hair follicles. Along with a small number of proteins from a range of species, the predicted CDCA4 protein contains a novel SERTA motif in addition to cyclin A-binding and PHD bromodomain-binding regions of homology. While the function of the SERTA domain is unknown, proteins containing this domain have previously been linked to cell cycle progression and chromatin remodelling. Using in silico database mining we have extended the number of evolutionarily conserved orthologues of known SERTA domain proteins and identified an uncharacterised member of the SERTA domain family, SERTAD4, with orthologues to date in human, mouse, rat, dog, cow, Tetraodon and chicken. Immunolocalisation of transiently and stably transfected epitope-tagged CDCA4 protein in mammalian cells suggests that it resides predominantly in the nucleus throughout all stages of the cell cycle. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Craniofacial anomalies are a common feature of human congenital dysmorphology syndromes, suggesting that genes expressed in the developing face are likely to play a wider role in embryonic development. To facilitate the identification of genes involved in embryogenesis, we previously constructed an enriched cDNA library by subtracting adult mouse liver cDNA from that of embryonic day (E)10.5 mouse pharyngeal arch cDNA. From this library, 273 unique clones were sequenced and known proteins binned into functional categories in order to assess enrichment of the library (1). We have now selected 31 novel and poorly characterised genes from this library and present bioinformatic analysis to predict proteins encoded by these genes, and to detect evolutionary conservation. Of these genes 61% (19/31) showed restricted expression in the developing embryo, and a subset of these was chosen for further in silico characterisation as well as experimental determination of subcellular localisation based on transient transfection of predicted full-length coding sequences into mammalian cell lines. Where a human orthologue of these genes was detected, chromosomal localisation was determined relative to known loci for human congenital disease.
Resumo:
Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macro phages and lal(-/-) pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal(-/-) genetic background under control of the 7.2-kb c-fins promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis.
Resumo:
Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.