4 resultados para crack growth

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stress corrosion cracks (SCC) had been found in a natural gas transmission pipeline during a dig-up and inspection program. The question was raised as to whether the SCC was active or dormant. This paper describes the resultant investigation to determine if a particular service crack was actively growing. The strategy adopted was to assess the appearance of the fracture surface of the service crack and to compare with expectations from laboratory specimens with active SCC. The conclusions from this study are as follows. To judge whether a crack in the service pipe is active or dormant, it is reasonable to compare the very crack tip of the service crack and a fresh crack in a laboratory sample. If the crack tip of the active laboratory sample is similar to that of the service pipe, it means the crack in the service pipe is likely to be active. From the comparison of the crack tip between the service pipe and the laboratory samples, it appears likely that the cracks in the samples extracted from service were most likely to have been active intergranular stress corrosion cracks. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The addition of small quantities (similar to 5 wt pct) layered silicates into polymer materials has the potential to greatly increase the modulus without adversely affecting the toughness or processability of the composite. The effect of microstructural features in the polymer nanocomposite and their possible effects on the mechanical properties with particular reference to linear low density polyethylene (LLDPE)/montmorillonite nanocomposites was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the general mechanisms of hot tearing are understood, i.e. the inability of liquid to feed imposed strain on the mushy material, work continues on improving the understanding of the mechanisms at play. A hot tear test rig that measures the temperature and load imposed on the mushy zone during solidification has been successfully used to study hot tearing. The mould has now been modified to incorporate a window above the hot spot region to allow observation of hot tear formation and growth. Combining information from visual observation with load and temperature data has led to a better understanding of the mechanism of hot tearing. Tests were carried out on an Al-0.5 wt-% Cu alloy. It was found that load development began at about 90% solid and a hot tear formed a short time later, at between 93% and 96% solid. Hot tearing started at a very low load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many potential applications for sintered aluminium are limited by the poor fatigue properties of the material. In order to increase understanding of the fatigue mechanisms in sintered aluminium, fatigue tests were carried out on a sintered 2xxx series aluminium alloy, AMB-2712. The alloy has a fatigue endurance strength of approximately 145 MPa (R = 0.1). Three regions were identified on the fatigue fracture surfaces. Region I contains the initiation site and transgranular crack propagation. When the size of the cyclic plastic zone ahead of the crack becomes comparable to the grain size, microstructural damage at the crack tip results in a transition to intergranular propagation. Region 2 mainly contains intergranularly fractured material, whilst the final fracture area makes up Region 3, in the form of dimple coalescence and intergranular failure. Transgranular fractographic features observed on fatigued specimens include fissure-type striations, cross-hatched grains, furrowed grains and grains containing step-like features. (c) 2006 Elsevier B.V. All rights reserved.