3 resultados para coupled-mode theory

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distortional buckling, unlike the usual lateral-torsional buckling in which the cross-section remains rigid in its own plane, involves distortion of web in the cross-section. This type of buckling typically occurs in beams with slender web and stocky flanges. Most of the published studies assume the web to deform with a cubic shape function. As this assumption may limit the accuracy of the results, a fifth order polynomial is chosen here for the web displacements. The general line-type finite element model used here has two nodes and a maximum of twelve degrees of freedom per node. The model not only can predict the correct coupled mode but also is capable of handling the local buckling of the web.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The ene:rgy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.