8 resultados para correlation modelling
em University of Queensland eSpace - Australia
Resumo:
Background: Intermediate phenotypes are often measured as a proxy for asthma. It is largely unclear to what extent the same set of environmental or genetic factors regulate these traits. Objective: Estimate the environmental and genetic correlations between self-reported and clinical asthma traits. Methods: A total of 3073 subjects from 802 families were ascertained through a twin proband. Traits measured included self-reported asthma, airway histamine responsiveness (AHR), skin prick response to common allergens including house dust mite (Dermatophagoides pteronyssinus [D. pter]), baseline lung function, total serum immunoglobulin E (IgE) and eosinophilia. Bivariate and multivariate analyses of eight traits were performed with adjustment for ascertainment and significant covariates. Results: Overall 2716 participants completed an asthma questionnaire and 2087 were clinically tested, including 1289 self-reported asthmatics (92% previously diagnosed by a doctor). Asthma, AHR, markers of allergic sensitization and eosinophilia had significant environmental correlations with each other (range: 0.23-0.89). Baseline forced expiratory volume in 1 s (FEV1) showed low environmental correlations with most traits. Fewer genetic correlations were significantly different from zero. Phenotypes with greatest genetic similarity were asthma and atopy (0.46), IgE and eosinophilia (0.44), AHR and D. pter (0.43) and AHR and airway obstruction (-0.43). Traits with greatest genetic dissimilarity were FEV1 and atopy (0.05), airway obstruction and IgE (0.07) and FEV1 and D. pter (0.11). Conclusion: These results suggest that the same set of environmental factors regulates the variation of many asthma traits. In addition, although most traits are regulated to great extent by specific genetic factors, there is still some degree of genetic overlap that could be exploited by multivariate linkage approaches.
Resumo:
The modelling of inpatient length of stay (LOS) has important implications in health care studies. Finite mixture distributions are usually used to model the heterogeneous LOS distribution, due to a certain proportion of patients sustaining-a longer stay. However, the morbidity data are collected from hospitals, observations clustered within the same hospital are often correlated. The generalized linear mixed model approach is adopted to accommodate the inherent correlation via unobservable random effects. An EM algorithm is developed to obtain residual maximum quasi-likelihood estimation. The proposed hierarchical mixture regression approach enables the identification and assessment of factors influencing the long-stay proportion and the LOS for the long-stay patient subgroup. A neonatal LOS data set is used for illustration, (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper analyses the time series behaviour of the initial public offering (IPO) market using an equilibrium model of demand and supply that incorporates the number of new issues, average underpricing, and general market conditions. Model predictions include the existence of serial correlation in both the number of new issues and the average level of underpricing, as well as interactions between these variables and the impact of general market conditions. The model is tested using 40 years of monthly IPO data. The empirical results are generally consistent with predictions.
Resumo:
The effect of the tumour-forming disease, fibropapillomatosis, on the somatic growth dynamics of green turtles resident in the Pala'au foraging grounds (Moloka'i, Hawai'i) was evaluated using a Bayesian generalised additive mixed modelling approach. This regression model enabled us to account for fixed effects (fibropapilloma tumour severity), nonlinear covariate functional form (carapace size, sampling year) as well as random effects due to individual heterogeneity and correlation between repeated growth measurements on some turtles. Somatic growth rates were found to be nonlinear functions of carapace size and sampling year but were not a function of low-to-moderate tumour severity. On the other hand, growth rates were significantly lower for turtles with advanced fibropapillomatosis, which suggests a limited or threshold-specific disease effect. However, tumour severity was an increasing function of carapace size-larger turtles tended to have higher tumour severity scores, presumably due to longer exposure of larger (older) turtles to the factors that cause the disease. Hence turtles with advanced fibropapillomatosis tended to be the larger turtles, which confounds size and tumour severity in this study. But somatic growth rates for the Pala'au population have also declined since the mid-1980s (sampling year effect) while disease prevalence and severity increased from the mid-1980s before levelling off by the mid-1990s. It is unlikely that this decline was related to the increasing tumour severity because growth rates have also declined over the last 10-20 years for other green turtle populations resident in Hawaiian waters that have low or no disease prevalence. The declining somatic growth rate trends evident in the Hawaiian stock are more likely a density-dependent effect caused by a dramatic increase in abundance by this once-seriously-depleted stock since the mid-1980s. So despite increasing fibropapillomatosis risk over the last 20 years, only a limited effect on somatic growth dynamics was apparent and the Hawaiian green turtle stock continues to increase in abundance.
Resumo:
Entrainment in flotation can be considered as a two-step process, including the transfer of the suspended solids in the top of the pulp region just below the pulp-froth interface to the froth phase and the transfer of the entrained particles in the froth phase to the concentrate. Both steps have a strong classification characteristic. The degree of entrainment describes the classification effect of the drainage process in the froth phase. This paper briefly reviews two existing models of degree of entrainment. Experimental data were collected from an Outokumpu 3 m(3) tank cell in the Xstrata Mt. Isa Mines copper concentrator. The data are fitted to the models and the effect of cell operating conditions including air rate and froth height on the degree of entrainment is examined on a size-by-size basis. It is found that there is a strong correlation between the entrainment and the water recovery, which is close to lineal. for the fines. The degree of entrainment decreases with increase in particle size. Within the normal range of cell operating conditions, few particles coarser than 50 mu m are recovered by entrainment. In general, the degree of entrainment increases with increase in the ail rate and decreases with increase in the froth height. Air rate and froth height strongly interact with each other and affect the entrainment process mainly via changes in the froth retention time, the froth structure and froth properties. As a result, other mechanisms such as entrapment may become important in recovering the coarse entrained particles. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.
Resumo:
A stochastic model for solute transport in aquifers is studied based on the concepts of stochastic velocity and stochastic diffusivity. By applying finite difference techniques to the spatial variables of the stochastic governing equation, a system of stiff stochastic ordinary differential equations is obtained. Both the semi-implicit Euler method and the balanced implicit method are used for solving this stochastic system. Based on the Karhunen-Loeve expansion, stochastic processes in time and space are calculated by means of a spatial correlation matrix. Four types of spatial correlation matrices are presented based on the hydraulic properties of physical parameters. Simulations with two types of correlation matrices are presented.
Resumo:
Time-course experiments with microarrays are often used to study dynamic biological systems and genetic regulatory networks (GRNs) that model how genes influence each other in cell-level development of organisms. The inference for GRNs provides important insights into the fundamental biological processes such as growth and is useful in disease diagnosis and genomic drug design. Due to the experimental design, multilevel data hierarchies are often present in time-course gene expression data. Most existing methods, however, ignore the dependency of the expression measurements over time and the correlation among gene expression profiles. Such independence assumptions violate regulatory interactions and can result in overlooking certain important subject effects and lead to spurious inference for regulatory networks or mechanisms. In this paper, a multilevel mixed-effects model is adopted to incorporate data hierarchies in the analysis of time-course data, where temporal and subject effects are both assumed to be random. The method starts with the clustering of genes by fitting the mixture model within the multilevel random-effects model framework using the expectation-maximization (EM) algorithm. The network of regulatory interactions is then determined by searching for regulatory control elements (activators and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged correlation coefficients measurement. The method is applied to two real time-course datasets from the budding yeast (Saccharomyces cerevisiae) genome. It is shown that the proposed method provides clusters of cell-cycle regulated genes that are supported by existing gene function annotations, and hence enables inference on regulatory interactions for the genetic network.