11 resultados para contractility
em University of Queensland eSpace - Australia
Resumo:
Subclinical left ventricular (W) dysfunction may be identified by reduced longitudinal contraction. We sought to define the effects of subclinical LV dysfunction on radial contractility in 53 patients with diabetes mellitus with no LV hypertrophy, normal ejection fraction and no ischaemia as assessed by dobutamine echocardiography, in comparison with age-matched controls. Radial peak myocardial systolic velocity (S-m) and early diastolic velocity (E-m), strain and strain rate were measured in the mid-posterior and mid-anteroseptal walls in parasternal views and each variable was averaged for individual patients (radial contractility). These variables were also measured in the mid-posterior and mid-anteroseptal walls in the apical long-axis view and each variable was averaged for individual patients (longitudinal contractility). Mean radial S-m, strain and strain rate were significantly increased in diabetic patients (2.9+/-0.6 cm/s, 28+/-5% and 1.8+/-0.4 s(-1) respectively) compared with controls (2.4+/-0.7 cm/s, 23+/-4% and 1.6+/-0.3 s(-1) respectively; all P<0.001), but there was no difference in E-m (3.3&PLUSMN;1.2 compared with 3.1&PLUSMN;1.1 cm/s, P=not significant). In contrast, longitudinal S-m, E-m, strain and strain rate were significantly lower in diabetic patients (3.6&PLUSMN;1.1 cm/s, 4.3&PLUSMN;1.6 cm/s, 21&PLUSMN;4% and 1.6&PLUSMN;0.3 s(-1) respectively) than in controls (4.3&PLUSMN;1.0 cm/s, 5.7&PLUSMN;2.3 cm/s, 26&PLUSMN;4% and 1.9&PLUSMN;0.3 s(-1) respectively; all P<0.00 1). Thus radial contractility appears to compensate for reduced longitudinal contractility in subclinical LV dysfunction occurring in the absence of ischaemia or LV hypertrophy.
Resumo:
The blood-borne renin-angiotensin system (RAS) is known best for its role in the maintenance of blood pressure and electrolyte and fluid homeostasis. However, numerous tissues show intrinsic angiotensin-generating systems that cater for specific local needs through actions that add to, or differ from, the circulating RAS. The male reproductive system has several sites of intrinsic RAS activity. Recent focus on the epididymis, by our laboratories and by others, has contributed important details about the local RAS in this tissue. The RAS components have been localized morphologically and topographically; they have been shown to be responsive to androgens and to hypoxia; and angiotensin has been shown to influence tubular, and consequently, fluid secretion. Components of the RAS have also been found in the testis, vas deferens, prostate and semen. Angiotensin II receptors, type 1 and, to a lesser extent, type 2 are widespread, and angiotensin IV receptors have been localized in the prostate. The roles of the RAS in local processes at these sites are still uncertain and have yet to be fully elucidated, although there is evidence for involvement in tubular contractility, spermatogenesis, sperm maturation, capacitation, acrosomal exocytosis and fertilization. Notwithstanding this evidence for the involvement of the RAS in various important aspects of male reproduction, there has so far been a lack of clinical evidence, demonstrable by changes in fertility, for a crucial role of the RAS in male reproduction. However, it is clear that there are several potential targets for manipulating the activity of the male reproductive system by interfering with the locally generated angiotensin systems.
Investigation of signaling pathways that mediate the inotropic effect of urotensin-II in human heart
Resumo:
Objective: This study investigated signaling pathways that may contribute to the potent positive inotropic effect of human urotensin-II (hU-II) in human isolated right atrial trabeculae obtained from patients with coronary artery disease. Methods: Trabeculae were set up in tissue baths and stimulated to contract at 1 Hz. Tissues were incubated with 20 nM hU-II with or without phorbol 12-myristate 13-acetate (PMA, 10 muM) to desensitize PKC, the PKC inhibitor chelerythrine (10 muM), 10 muM 4alpha-phorbol that does not desensitize PKC, the myosin light chain kinase inhibitor wortmannin (50 nM, 10 muM), or the Rho kinase inhibitor Y-27632 (0.1 - 10 muM). Activated RhoA was determined by affinity immunoprecipitation, and phosphorylation of signaling proteins was determined by SDS-PAGE. Results: hU-II caused a potent positive inotropic response in atrial trabeculae, and this was concomitant with increased phosphorylation of regulatory myosin light chain (MLC-2, 1.8 +/- 0.4-fold, P < 0.05, n = 6) and PKCalpha/betaII (1.4 +/- 0.2-fold compared to non-stimulated controls, P < 0.05, n = 7). Pretreatment of tissues with PMA caused a marked reduction in the inotropic effect of hU-II, but did not affect hU-II-mediated phosphorylation of MLC-2. The inotropic response was inhibited by chelerythrine, but not 4alpha-phorbol or wortmannin. Although Y-27632 also reduced the positive inotropic response to hU-II, this was associated with a marked reduction in basal force of contraction. RhoA. GTP was immunoprecipitated in tissues pretreated with or without hU-II, with findings showing no detectable activation of RhoA in the agonist stimulated tissues. Conclusions: The findings indicated that hU-II increased force of contraction in human heart via a PKC-dependent mechanism and increased phosphorylation of MLC-2, although this was independent of PKC. The positive inotropic effect was independent of myosin light chain kinase and RhoA-Rho kinase signaling pathways. (C) 2004 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES We sought to determine whether disturbances of myocardial contractility and reflectivity could be detected in diabetic patients without overt heart disease and whether these changes were independent and incremental to left ventricular hypertrophy (LVH). BACKGROUND Left ventricular (LV) dysfunction is associated with diabetes mellitus, but LVH is common in this population and the relationship between diabetic LV dysfunction and LVH is unclear. METHODS We studied 186 patients with normal ejection fraction and no evidence of CAD: 48 with diabetes mellitus only (DM group), 45 with LVH only (LVH group), 45 with both diabetes and LVH (DH group), and 48 normal controls. Peak strain and strain rate of six walls in apical four-chamber, long-axis, and two-chamber views were evaluated and averaged for each patient. Calibrated integrated backscatter (113) was assessed by comparison of the septal or posterior wall with pericardial IB intensity. RESULTS All patient groups (DM, DH, LVH) showed reduced systolic function compared with controls, evidenced by lower peak strain (p < 0.001) and strain rate (p = 0.005). Calibrated 113, signifying myocardial reflectivity, was greater in each patient group than in controls (p < 0.05). Peak strain and strain rate were significantly lower in the DH group than in those in the DM alone (p < 0.03) or LVH alone (p = 0.01) groups. CONCLUSIONS Diabetic patients without overt heart disease demonstrate evidence of systolic dysfunction and increased myocardial reflectivity. Although these changes are similar to those caused by LVH, they are independent and incremental to the effects of LVH. (C) 2003 by the American College of Cardiology Foundation.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.
Resumo:
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MITI, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pia ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1 mu M, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
1 The ability of aminoguanidine (AG), an inhibitor of collagen crosslinking, to prevent changes in cardiac and vascular structure and function has been determined in the deoxycorticosterone acetate (DOCA)-salt hypertensive rat as a model of the cardiovascular remodelling observed in chronic human hypertension. 2 Uninephrectomized rats (UNX) administered DOCA (25 mg every fourth day s.c.) and 1% NaCl in drinking water for 28 days developed cardiovascular remodelling shown as systolic hypertension, left ventricular hypertrophy, increased thoracic aortic and left ventricular wall thickness, increased left ventricular inflammatory cell infiltration together with increased interstitial collagen and increased passive diastolic stiffness, impaired contractility, prolongation of the action potential duration and vascular dysfunction. 3 Treatment with AG (0.05-0.1% in drinking water; average 182 +/- 17 mg kg(-1) day(-1) in DOCA-salt rats) decreased blood pressure (DOCA-salt 176 +/- 4; + AG 144 +/- 5 mmHg; *P < 0.05 vs DOCA-salt), decreased left ventricular wet weights (DOCA-salt 3.17 +/- 0.07; + AG 2.66 +/- 0.08 mg g(-1) body wt*), reduced diastolic stiffness constant (DOCA-salt 30.1 +/- 1.2; + AG 24.3 +/- 1.2* (dimensionless)), improved cardiac contractility (DOCA-salt 1610 +/- 130; + AG 2370 +/- 100 mmHg s(-1)*) and vascular reactivity (3.4-fold increase in maximal contractile response to noradrenaline, 3.2-fold increase in maximal relaxation response to acetylcholine, twofold increase in maximal relaxation response to sodium nitroprusside) and prolonged the action potential duration at 50% repolarization without altering collagen content or inflammatory cell infiltration. 4 Thus, cardiovascular function in DOCA-salt hypertensive rats can be improved by AG independent of changes in collagen content. This suggests that collagen crosslinking is an important cause of cardiovascular dysfunction during cardiovascular remodelling in hypertension.
Resumo:
The first derivative of pressure over time (dP/dt) is a marker of left ventricular (LV) systolic function that can be assessed during cardiac catheterization and echocardiography. Radial artery dP/dt (Radial-dP/dt) has been proposed as a possible marker of LV systolic function (Nichols & O’Rourke, McDonald’s Blood Flow in Arteries) and we sought to test this hypothesis. Methods:We compared simultaneously recorded RadialdP/ dt (by high-fidelity tonometry) with LV-dP/dt (by highfidelity catheter and echocardiography parameters analogous to LV-dP/dt) in patients without aortic valve disease. In study 1, beat to beat Radial-dP/dt and LV-dP/dt were recorded at rest and during supine exercise in 12 males (aged 61±12 years) undergoing cardiac catheterization. In study 2, 2D-echocardiography and Radial-dP/dt were recorded in 59 patients (43 men; aged 64±10 years) at baseline and peak dobutamine-induced stress. Three measures at the basal septum were taken as being analogous to LV-dP/dt: (1) peak systolic strain rate, (2) strain rate (SR-dP/dt), and (3) tissue velocity during isovolumic contraction. Results: Study 1; there was a significant difference between resting LV-dP/dt (1461±383 mmHg/s) and Radial-dP/dt (1182±319 mmHg/s; P < 0.001), and a poor, but statistically significant, correlation between the variables (R2 = 0.006; P < 0.001) due to the high number of data points compared (n = 681). Similar results were observed during exercise. Study 2; there was a moderate association between baseline Radial-dP/dt and SRdP/ dt (R2 =−0.17; P < 0.01), but no significant relationship between Radial-dP/dt and all other echocardiographic measures analogous to LV-dP/dt at rest or peak stress (P > 0.05). Conclusion: The radial pressurewaveform is not a reliable marker of LV contractility.