17 resultados para continuous process, fermentation

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Process optimisation and optimal control of batch and continuous drum granulation processes are studied in this paper. The main focus of the current research has been: (i) construction of optimisation and control relevant, population balance models through the incorporation of moisture content, drum rotation rate and bed depth into the coalescence kernels; (ii) investigation of optimal operational conditions using constrained optimisation techniques; (iii) development of optimal control algorithms based on discretized population balance equations; and (iv) comprehensive simulation studies on optimal control of both batch and continuous granulation processes. The objective of steady state optimisation is to minimise the recycle rate with minimum cost for continuous processes. It has been identified that the drum rotation-rate, bed depth (material charge), and moisture content of solids are practical decision (design) parameters for system optimisation. The objective for the optimal control of batch granulation processes is to maximize the mass of product-sized particles with minimum time and binder consumption. The objective for the optimal control of the continuous process is to drive the process from one steady state to another in a minimum time with minimum binder consumption, which is also known as the state-driving problem. It has been known for some time that the binder spray-rate is the most effective control (manipulative) variable. Although other possible manipulative variables, such as feed flow-rate and additional powder flow-rate have been investigated in the complete research project, only the single input problem with the binder spray rate as the manipulative variable is addressed in the paper to demonstrate the methodology. It can be shown from simulation results that the proposed models are suitable for control and optimisation studies, and the optimisation algorithms connected with either steady state or dynamic models are successful for the determination of optimal operational conditions and dynamic trajectories with good convergence properties. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Finite element analysis (FEA) of nonlinear problems in solid mechanics is a time consuming process, but it can deal rigorously with the problems of both geometric, contact and material nonlinearity that occur in roll forming. The simulation time limits the application of nonlinear FEA to these problems in industrial practice, so that most applications of nonlinear FEA are in theoretical studies and engineering consulting or troubleshooting. Instead, quick methods based on a global assumption of the deformed shape have been used by the roll-forming industry. These approaches are of limited accuracy. This paper proposes a new form-finding method - a relaxation method to solve the nonlinear problem of predicting the deformed shape due to plastic deformation in roll forming. This method involves applying a small perturbation to each discrete node in order to update the local displacement field, while minimizing plastic work. This is iteratively applied to update the positions of all nodes. As the method assumes a local displacement field, the strain and stress components at each node are calculated explicitly. Continued perturbation of nodes leads to optimisation of the displacement field. Another important feature of this paper is a new approach to consideration of strain history. For a stable and continuous process such as rolling and roll forming, the strain history of a point is represented spatially by the states at a row of nodes leading in the direction of rolling to the current one. Therefore the increment of the strain components and the work-increment of a point can be found without moving the object forward. Using this method we can find the solution for rolling or roll forming in just one step. This method is expected to be faster than commercial finite element packages by eliminating repeated solution of large sets of simultaneous equations and the need to update boundary conditions that represent the rolls.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhizopus arrhizus, strain DAR 36017, produced L(+)-lactic acid in a simultaneous saccharification and fermentation process using starch waste effluents. Lactic acid at 19.5 - 44.3 g l(-1) with a yield of 0.85 - 0.96 g g(-1) was produced in 40 h using 20 - 60 g starch l(-1). Supplementation of nitrogen source may be unnecessary if potato or corn starch waste effluent was used as a production medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fungal species of Rhizopus oryzae 2062 has the capacity to carry out a single stage fermentation process for lactic acid production from potato starch wastewater. Starch hydrolysis, reducing sugar accumulation, biomass formation, and lactic acid production were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/L at pH 6.0 and 30degreesC was favourable for starch fermentation, resulting in a lactic acid yield of 78.3%similar to85.5% associated with 1.5similar to2.0 g/L fungal biomass produced in 36 h of fermentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose: Patients' knowledge and beliefs about their illnesses are known to influence a range of health related variables, including treatment compliance. It may, therefore, be important to quantify these variables to assess their impact on compliance, particularly in chronic illnesses such as Obstructive Sleep Apnea (OSA) that rely on self-administered treatments. The aim of this study was to develop two new tools, the Apnea Knowledge Test (AKT) and the Apnea Beliefs Scale (ABS), to assess illness knowledge and beliefs in OSA patients. Patients and methods: The systematic test construction process followed to develop the AKT and the ABS included consultation with sleep experts and OSA patients. The psychometric properties of the AKT and ABS were then investigated in a clinical sample of 81 OSA patients and 33 healthy, non-sleep disordered adults. Results: Results suggest both measures are easily understood by OSA patients, have adequate internal consistency, and are readily accepted by patients. A preliminary investigation of the validity of these tools, conducted by comparing patient data to that of the 33 healthy adults, revealed that apnea patients knew more about OSA, had more positive attitudes towards continuous positive airway pressure (CPAP) treatment, and attributed more importance to treating sleep disturbances than non-clinical groups. Conclusions: Overall, the results of psychometric analyses of these tests suggest these measures will be useful clinical tools with numerous beneficial applications, particularly in CPAP compliance studies and apnea education program evaluations. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minimal representations are known to have no redundant elements, and are therefore of great importance. Based on the notions of performance and size indices and measures for process systems, the paper proposes conditions for a process model being minimal in a set of functionally equivalent models with respect to a size norm. Generalized versions of known procedures to obtain minimal process models for a given modelling goal, model reduction based on sensitivity analysis and incremental model building are proposed and discussed. The notions and procedures are illustrated and compared on a simple example, that of a simple nonlinear fermentation process with different modelling goals and on a case study of a heat exchanger modelling. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h(-1)) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci. (c) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biochemical kinetic of simultaneous saccharification and fermentation (SSF) for lactic acid production by fungal species of Rhizopus arrhizus 36017 and Rhizopus oryzae 2062 was studied with respect to growth pH, temperature and substrate. Both R. arrhizus 36017 and R. oryzae 2062 had a capacity to carry out a single stage SSF process for lactic acid production from potato starch wastewater. The kinetic characteristics, termed as starch hydrolysis, accumulation of reducing sugars, lactic acid production and fungal biomass formation, were affected with variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.85-0.92 g/g associated with 1.5-3.5 g/l fungal biomass produced in 36-48 h fermentation. R. arrhizus 36017 had a higher capacity to produce lactic acid, while R. oryzae 2062 produced more fungal biomass under similar conditions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separate treatment of dewatering liquor from anaerobic sludge digestion significantly reduces the nitrogen load of the main stream and improves overall nitrogen elimination. Such ammonium-rich wastewater is particularly suited to be treated by high rate processes which achieve a rapid elimination of nitrogen with a minimal COD requirement. Processes whereby ammonium is oxidised to nitrite only (nitritation) followed by denitritation with carbon addition can achieve this. Nitrogen removal by nitritation/denitritation was optimised using a novel SBR operation with continuous dewatering liquor addition. Efficient and robust nitrogen elimination was obtained at a total hydraulic retention time of 1 day via the nitrite pathway. Around 85-90% nitrogen removal was achieved at an ammonium loading rate of 1.2 g NH4+-N m(-3) d(-1). Ethanol was used as electron donor for denitritation at a ratio of 2.2gCODg(-1) N removed. Conventional nitritation/denitritation with rapid addition of the dewatering liquor at the beginning of the cycle often resulted in considerable nitric oxide (NO) accumulation during the anoxic phase possibly leading to unstable denitritation. Some NO production was still observed in the novel continuous mode, but denitritation was never seriously affected. Thus, process stability can be increased and the high specific reaction rates as well as the continuous feeding result in decreased reactor size for full-scale operation. (c) 2006 Elsevier Ltd. All rights reserved.