4 resultados para conformational control element

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Current methods to find significantly under- and over-represented gene ontology (GO) terms in a set of genes consider the genes as equally probable balls in a bag, as may be appropriate for transcripts in micro-array data. However, due to the varying length of genes and intergenic regions, that approach is inappropriate for deciding if any GO terms are correlated with a set of genomic positions. Results: We present an algorithm - GONOME - that can determine which GO terms are significantly associated with a set of genomic positions given a genome annotated with (at least) the starts and ends of genes. We show that certain GO terms may appear to be significantly associated with a set of randomly chosen positions in the human genome if gene lengths are not considered, and that these same terms have been reported as significantly over-represented in a number of recent papers. This apparent over-representation disappears when gene lengths are considered, as GONOME does. For example, we show that, when gene length is taken into account, the term development is not significantly enriched in genes associated with human CpG islands, in contradiction to a previous report. We further demonstrate the efficacy of GONOME by showing that occurrences of the proteosome-associated control element (PACE) upstream activating sequence in the S. cerevisiae genome associate significantly to appropriate GO terms. An extension of this approach yields a whole-genome motif discovery algorithm that allows identification of many other promoter sequences linked to different types of genes, including a large group of previously unknown motifs significantly associated with the terms 'translation' and 'translational elongation'. Conclusion: GONOME is an algorithm that correctly extracts over-represented GO terms from a set of genomic positions. By explicitly considering gene size, GONOME avoids a systematic bias toward GO terms linked to large genes. Inappropriate use of existing algorithms that do not take gene size into account has led to erroneous or suspect conclusions. Reciprocally GONOME may be used to identify new features in genomes that are significantly associated with particular categories of genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is highly expressed in osteoclasts and in a subset of tissue macrophages and dendritic cells. It is expressed at lower levels in the parenchymal cells of the liver, glomerular mesangial cells of the kidney and pancreatic acinar cells. We have identified novel TRAP mRNAs that differ in their 5-untranslated region (5'-UTR) sequence, but align with the known murine TRAP mRNA from the first base of Exon 2. The novel 5'-UTRs represent alternative first exons located upstream of the known 5'-UTR. A similar genomic structure exists for the human TRAP gene with partial conservation of the exon and promoter sequences. Expression of the most distal 5'-UTR (Exon 1A) is restricted to adult bone and spleen tissue. Exon 1B is expressed primarily in tissues containing TRAP-positive nonhaematopoietic cells. The known TRAP 5'-UTR (Exon 1) is expressed in tissues characteristic of myeloid cell expression. In addition the Exon 1C promoter sequence is shown to comprise distinct transcription start regions, with an osteoclast-specific transcription initiation site identified downstream of a TATA-like element. Macrophages are shown to initiate transcription of the Exon 1C transcript from a purine-rich region located upstream of the osteoclast-specific transcription start point. The distinct expression patterns for each of the TRAP 5'-UTRs suggest that TRAP mRNA expression is regulated by the use of four alternative tissue- and cell-restricted promoters. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we identified a large number of ultraconserved (uc) sequences in noncoding regions of human, mouse, and rat genomes that appear to be essential for vertebrate and amniote ontogeny. Here, we used similar methods to identify ultraconserved genomic regions between the insect species Drosophila melanogaster and Drosophila pseudoobscura, as well as the more distantly related Anopheles gambiae. As with vertebrates, ultraconserved sequences in insects appear to Occur primarily in intergenic and intronic sequences, and at intron-exon junctions. The sequences are significantly associated with genes encoding developmental regulators and transcription factors, but are less frequent and are smaller in size than in vertebrates. The longest identical, nongapped orthologous match between the three genomes was found within the homothorax (hth) gene. This sequence spans an internal exon-intron junction, with the majority located within the intron, and is predicted to form a highly stable stem-loop RNA structure. Real-time quantitative PCR analysis of different hth splice isoforms and Northern blotting showed that the conserved element is associated with a high incidence of intron retention in hth pre-mRNA, suggesting that the conserved intronic element is critically important in the post-transcriptional regulation of hth expression in Diptera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyclotides are a family of circular proteins with a range of biological activities and potential pharmaceutical and agricultural applications. The biosynthetic mechanism of cyclization is unknown and the discovery of novel sequences may assist in achieving this goal. In the present study, we have isolated a new cyclotide from Oldenlandia affinis, kalata B8, which appears to be a hybrid of the two major subfamilies (Mobius and bracelet) of currently known cyclotides. We have determined the three-dimensional structure of kalata B8 and observed broadening of resonances directly involved in the cystine knot motif, suggesting flexibility in this region despite it being the core structural element of the cyclotides. The cystine knot motif is widespread throughout Nature and inherently stable, making this apparent flexibility a surprising result. Further-more, there appears to be isomerization of the peptide backbone at an Asp-Gly sequence in the region involved in the cyclization process. Interestingly, such isomerization has been previously characterized in related cyclic knottins from Momordica cochinchinensis that have no sequence similarity to kalata B8 apart from the six conserved cysteine residues and may result from a common mechanism of cyclization. Kalata B8 also provides insight into the structure-activity relationships of cyclotides as it displays anti-HIV activity but lacks haemolytic activity. The 'uncoupling' of these two activities has not previously been observed for the cyclotides and may be related to the unusual hydrophilic nature of the peptide.