59 resultados para complex B vitamins

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose - A higher plasma concentration of total homocysteine (tHcy) is associated with a greater risk of cardiovascular events. Previous studies, largely in younger individuals, have shown that B vitamins lowered tHcy by substantial amounts and that this effect is greater in people with higher tHcy and lower folate levels. Methods - We undertook a 2-year, double-blind, placebo-controlled, randomized trial in 299 men aged >= 75 years, comparing treatment with a daily tablet containing 2 mg of folate, 25 mg of B-6, and 400 mu g of B-12 or placebo. The study groups were balanced regarding age (mean +/- SD, 78.9 +/- 2.8 years), B vitamins, and tHcy at baseline. Results - Among the 13% with B12 deficiency, the difference in mean changes in treatment and control groups for tHcy was 6.74 mu mol/L (95% CI, 3.94 to 9.55 mu mol/L) compared with 2.88 mu mol/L (95% CI, 0.07 to 5.69 mu mol/L) for all others. Among the 20% with hyperhomocysteinaemia, the difference between mean changes in treatment and control groups for men with high plasma tHcy compared with the rest of the group was 2.8 mu mol/L (95% CI, 0.6 to 4.9 mu mol/L). Baseline vitamin B12, serum folate, and tHcy were significantly associated with changes in plasma tHcy at follow-up (r = 0.252, r = 0.522, and r = -0.903, respectively; P = 0.003, <0.001, and <0.001, respectively) in the vitamin group. Conclusions - The tHcy-lowering effect of B vitamins was maximal in those who had low B12 or high tHcy levels. Community-dwelling older men, who are likely to be deficient in B12 or have hyperhomocysteinemia, may be most likely to benefit from treatment with B vitamins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hyperhomocysteinemia is a potential risk factor for vascular disease and is associated with endothelial dysfunction, a predictor of adverse cardiovascular events. Renal patients (end-stage renal failure (ESRF) and transplant recipients (RTR)) exhibit both hyperhomocysteinemia and endothelial dysfunction with increasing evidence of a causative link between the 2 conditions. The elevated homocysteine appears to be due to altered metabolism in the kidney (intrarenal) and in the uremic circulation ( extrarenal). This review will discuss 18 supplementation studies conducted in ESRF and 6 in RTR investigating the effects of nutritional therapy to lower homocysteine. The clinical significance of lowering homocysteine in renal patients will be discussed with data on the effects of B vitamin supplementation on cardiovascular outcomes such as endothelial function presented. Folic acid is the most effective nutritional therapy to lower homocysteine. In ESRF patients, supplementation with folic acid over a wide dose range ( 2 - 20 mg/day) either individually or in combination with other B vitamins will decrease but not normalize homocysteine. In contrast, in RTR similar doses of folic acid normalizes homocysteine. Folic acid improves endothelial function in ESRF patients, however this has yet to be investigated in RTR. Homocysteine-lowering therapy is more effective in ESRF patients than RTR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dorsalis complex contains some of the most economically important fruit fly pests of the Asia-Pacific regions, including Bactrocera dorsalis, Bactrocera papayae and Bactrocera carambolae. These species are morphologically indistinct and genetically very similar. We describe the development of 12 microsatellite markers isolated from a representative of the dorsalis complex, B. papayae. We show the potential utility of the B. papayae microsatellites and a set of microsatellites isolated from Bactrocera tryoni as population and species markers for the dorsalis complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiamin (vitamin B1) is required in animal diets because it is the precursor of the enzyme cofactor, thiamin diphosphate. Unlike other B vitamins, the dietary thiamin requirement is proportional to non-fat energy intake but there is no obvious biochemical reason for this relationship. In the present communication we show for two enzymes that the cofactor undergoes a slow destruction during catalysis, which may explain the interdependence of thiamin and energy intakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binuclear complex [NBu4n](4)[Cr-2(ox)(5)]. 2CHCl(3) has been prepared by an ion-exchange procedure employing Dowex 50WX2 cation-exchange resin in the n-butylammonium form and potassium tris(oxalato)chromate(III). The dimeric complex was characterised by a crystal structure determination: monoclinic, space group C2/c, a = 29.241(7), b = 15.192(2), c = 22.026(5) Angstrom, beta = 94.07(1)degrees, Z = 4. The magnetic susceptibility (300-4.2 K) indicated that the chromium(III) sites were antiferromagnetically coupled (J = -3.1 cm(-1)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new macrocyclic ligand trans-6-(9-anthracenylmethylamino)-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecan-13-amine has been synthesized and characterised as its copper(II) complex and the crystal structure of this complex has been determined. Fluorescence of the anthracenyl group of the macrocycle is quenched in its free base form and when complexed with Cu-II. Fluorescence returns when Lewis acids such as H+ and Zn-II are added to solutions of the ligand, indicating that photoinduced electron transfer from the amine lone pairs is responsible for fluorescence quenching in the free base form. By contrast, fluorescence of the complex is quenched by intramolecular electronic energy transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P-II is a signal transduction protein that is part of the cellular machinery used by many bacteria to regulate the activity of glutamine synthetase and the transcription of its gene. The structure of P-II was solved using a hexagonal crystal form (form I). The more physiologically relevant form of P-II is a complex with small molecule effecters. We describe the structure of P-II with ATP obtained by analysis of two different crystal forms (forms II and III) that were obtained by co-crystallization of P-II with ATP. Both structures have a disordered recognition (T) loop and show differences at their C termini. Comparison of these structures with the form I protein reveals changes that occur on binding ATP. Surprisingly, the structure of the P-II/ATP complex differs with that of GlnK, a functional homologue. The two proteins bind the base and sugar of ATP in a similar manner but show differences in the way that they interact with the phosphates. The differences in structure could account for the differences in their activities, and these have been attributed to a difference in sequence at position 82. It has been demonstrated recently that P-II and GlnK form functional heterotrimers in vivo. We construct models of the heterotrimers and examine the junction between the subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautrophicum at 2.0 Angstrom resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta -strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta -sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis. (C) 2001 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Epidemiological studies suggest that raised plasma concentrations of total homocysteine (tHcy) may be a common, causal and treatable risk factor for atherothromboembolic ischaemic stroke. Although tHcy can be lowered effectively with small doses of folic acid, vitamin B-12 and vitamin B-6, it is not known whether lowering tHcy, by means of multivitamin therapy, can prevent stroke and other major atherothromboembolic vascular events. Purpose: To determine whether vitamin supplements (folic acid 2 mg, B-6 25 Mg, B-12 500 mug) reduce the risk of stroke, and other serious vascular events, in patients with recent stroke or transient ischaemic attacks of the brain or eye (TIA). Methods: An international, multi-centre, randomised, double-blind, placebo-controlled clinical trial. Results: As of November 2001, more than 1,400 patients have been randomised from 10 countries in four continents. Conclusion: VITATOPS aims to recruit and follow up 8,000 patients between 2000 and 2004, and provide a reliable estimate of the safety and effectiveness of dietary supplementation with folic acid, vitamin B-12, and vitamin B-6 in reducing recurrent serious vascular events among a wide range of patients with TIA and stroke. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, Terl, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of Terl causes the DNA to become slightly unwound and bent by similar to 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to similar to 60 degrees. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner, in the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry at the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.