39 resultados para climate drivers
em University of Queensland eSpace - Australia
Resumo:
The purpose of this study was to examine factors which affect driving behaviour and accident rates in women in Australia. Two groups of women (aged 18-23 and 45-50 years) participating in the Australian Longitudinal Study on Women's Health, completed a mailed questionnaire on driver behaviour and road accidents. Self reported accident rates in the last 3 years were 1.87 per 100 000 km for the young drivers (n = 1199) and 0.59 per 100 000 km for the mid-age drivers (n = 1564); most accidents involved damage only, not injury. Mean scores for lapses obtained using the Driver Behaviour Questionnaire, were similar in the two age groups and similar to those found in other studies. In contrast, scores for errors and violations for the young women were higher than for the mid-age group and previous reports using the same instruments. Riskier driving behaviour among young women was associated with stress and habitual alcohol consumption. In the mid-age group, poorer driver behaviour scores were related to higher levels of education, feeling rushed, higher habitual alcohol consumption and lower life satisfaction scores. Accident rates in both groups were significantly related to lapses. Women born in non-English speaking countries had significantly higher risk of accidents compared to Australian-born women: relative risk = 3.40, 95% confidence interval (1.93, 5.98) for the young drivers; relative risk = 1.77, 95% confidence interval (1.11, 2.83) for mid-age drivers. These findings support the need for road safety campaigns targeted at young women to reduce dangerous driving practices, such as speeding,'tail gating' and overtaking on the inside. There is also a need for further research to understand how lifestyle characteristics are associated with higher risk of accidents and to explore factors which might account for the higher risk for women drivers who were born overseas. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Sea temperatures in many tropical regions have increased by almost 1 degrees C over the past 100 years, and are currently increasing at similar to 1-2 degrees C per century. Coral bleaching occurs when the thermal tolerance of corals and their photosynthetic symbionts (zooxanthellae) is exceeded. Mass coral bleaching has occurred in association with episodes of elevated sea temperatures over the past 20 years and involves the loss of the zooxanthellae following chronic photoinhibition. Mass bleaching has resulted in significant losses of live coral in many parts of the world. This paper considers the biochemical, physiological and ecological perspectives of coral bleaching. It also uses the outputs of four runs from three models of global climate change which simulate changes in sea temperature and hence how the frequency and intensity of bleaching events will change over the next 100 years. The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades. Events as severe as the 1998 event, the worst on record, are likely to become commonplace within 20 years. Most information suggests that the capacity for acclimation by corals has already been exceeded, and that adaptation will be too slow to avert a decline in the quality of the world's reefs. The rapidity of the changes that are predicted indicates a major problem for tropical marine ecosystems and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.
Resumo:
Regression analyses of a long series of light-trap catches at Narrabri, Australia, were used to describe the seasonal dynamics of Helicoverpa armigera (Hubner). The size of the second generation was significantly related to the size of the first generation, to winter rainfall, which had a positive effect, and to spring rainfall which had a negative effect. These variables accounted for up to 96% of the variation in size of the second generation from year to year. Rainfall and crop hosts were also important for the size of the third generation. The area and tonnage of many potential host crops were significantly correlated with winter rain. When winter rain was omitted from the analysis, the sizes of both the second and third generations could be expressed as a function of the size of the previous generation and of the areas planted to lucerne, sorghum and maize. Lucerne and maize always had positive coefficients and sorghum a negative one. We extended our analysis to catches of H. punctigera (Wallengren), which declines in abundance after the second generation. Winter rain had a positive effect on the sizes of the second and third generations, and rain in spring or early summer had a negative effect. Only the area grown to lucerne had a positive effect on abundance. Forecasts of pest levels from a few months to a few weeks in advance are discussed, along with the improved understanding of the seasonal dynamics of both species and the significance of crops in the management of insecticide resistance for H. armigera.
Resumo:
We examined the distribution of butterflies over the mostly arid and semi-arid continent of Australia and analyzed the proportion of migrant species and species diversity with respect to an array of climatic and geographic variables. On a continent-wide scale, latitude explained virtually no variance in either proportion of migrants (r(2) = 0.01) or species diversity (r(2) = 0.03) in Australian butterflies. These results are in marked contrast to those for temperate-zone birds from three continents where latitude explained between 82 and 98% of the variance in frequency of migrants and also accounted for much of the variance in bird species diversity. In eastern Australia where rainfall regimes are similar to those in temperate Europe and North and South America, latitude explains 78% of the variance in frequency of butterfly migrants. In both eastern and central Australia, latitude also accounts for relatively high proportions of the variance in species diversity. Rainfall patterns and especially soil moisture are negatively associated with migration frequency in Australian butterfly faunas, both alone and in combination with other climate variables. Where moisture levels are relatively high, as in eastern Australia, measures of temperature are associated with migration frequency, a result consistent with findings for temperate-zone birds, suggesting latitude is a surrogate for temperature. The ultimate causes of migration in temperate-zone birds and Australian butterflies are the uneven temporal, and in Australia also spatial, distribution of resources. Uneven distribution is brought about primarily by temperature in temperate regions and by erratic rainfall over much of arid Australia. As a key determinant of productivity, especially in the tropics and subtropics, aridity is likely to be an important determinant of the global distributions of migrants.
Resumo:
The El Nino/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial interglacial cycle(1). ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time(2,3), but the proposals disagree on whether increased frequency of El Nino events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Nino events ( summer precipitation declines in El Nino years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard - Oeschger events - millennial-scale warm events in the North Atlantic climate record - although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (, 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.
Resumo:
The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.
Resumo:
Research on outcomes from psychiatric disorders has highlighted the importance of expressed emotion (EE), but its cost-effective measurement remains a challenge. This article describes development of the Family Attitude Scale (FAS), a 30-item instrument that can be completed by any informant. Its psychometric characteristics are reported in parents of undergraduate students and in 70 families with a schizophrenic member. The total FAS had high internal consistency in all samples, and reports of angry behaviour in FAS items showed acceptable inter-rater agreement. The FAS was associated with the reported anger, anger expression and anxiety of respondents. Substantial associations between the parents' FAS and the anger and anger expression of students was also observed. Parents of schizophrenic patients had higher FAS scores than parents of students, and the FAS was higher if disorder duration was longer or patient functioning was poorer. Hostility, high criticism and low warmth on the Camberwell Family Interview (CFI) were associated with a more negative FAS. The highest FAS in the family was a good predictor of a highly critical environment on the CFI. The FAS is a reliable and valid indicator of relationship stress and expressed anger that has wide applicability. (C) 1997 Elsevier Science Ireland Ltd.