7 resultados para chromosome mapping
em University of Queensland eSpace - Australia
Resumo:
Distal spinal muscular atrophy is a heterogeneous group of neuromuscular disorders caused by progressive anterior born cell degeneration and characterized by progressive motor weakness and muscular atrophy, predominantly in the distal parts of the limbs. Here we report on chronic autosomal recessive distal spinal muscular atrophy in a large, inbred family with onset at various ages. Because this condition had some of the same clinical features as spinal muscular atrophy with respiratory distress, we tested the disease gene for linkage to chromosome 11q and mapped the disease locus to chromosome 11q13 in the genetic interval that included the spinal muscular atrophy with respiratory distress gene (D11S1889-D11S1321, Z(max) = 4.59 at theta = 0 at locus D11S4136). The sequencing of IGHMBP2, the human homologue of the mouse neuromuscular degeneration gene (nmd) that accounts for spinal muscular atrophy with respiratory distress, failed to detect any mutation in our chronic distal spinal muscular atrophy patients, suggesting that spinal muscular atrophy with respiratory distress and chronic distal spinal muscular atrophy are caused by distinct genes located in the so-me chromosomal region. In addition, the high intrafamilial variability in age at onset raises the question of whether nonallelic modifying genes could be involved in chronic distal spinal muscular atrophy.
Resumo:
A low-density, male-based linkage map was constructed as one of the objectives of the International Equine Gene Mapping Workshop. Here we report the second generation map based on testing 503 half-sibling offspring from 13 sire families for 344 informative markers using the crimap program. The multipoint linkage analysis localized 310 markers (90%) with 257 markers being linearly ordered. The map included 34 linkage groups representing all 31 autosomes and spanning 2262 cM with an average interval between loci of 10.1 cM. This map is a milestone in that it is the first map with linkage groups assigned to each of the 31 automosomes and a single linkage group to all but three chromosomes.
Resumo:
CD4-CD8 ratio is an important diagnostic measure of immune system functioning. In particular, CD4-CD8 ratio predicts the time taken for progression of HIV infection to acquired immune deficiency syndrome (AIDS) and the long-term survival of AIDS patients. To map genes that regulate differences between healthy individuals in CD4-CD8 ratio, we typed 757 highly polymorphic microsatellite markers at an average spacing of similar to5 cM across the genome in 405 pairs of dizygotic twins at ages 12, 14 and 16. We used multipoint variance components linkage analysis to test for linkage between marker loci and CD4-CD8 ratio at each age. We found suggestive evidence of linkage on chromosome 11p in 12-year-old twins (LOD=2.55, P=0.00031) and even stronger evidence of linkage in the same region at age 14 (LOD 3.51, P=0.00003). Possible candidate genes include CD5 and CD6, which encode cell membrane proteins involved in the positive selection of thymocytes. We also found suggestive evidence of linkage at other areas of the genome including regions on chromosomes 1, 3, 4, 5, 6, 12, 13, 15, 17 and 22.
Resumo:
Background: Eosinophils are granulocytic white blood cells implicated in asthma and atopic disease. The degree of eosinophilia in the blood of patients with asthma correlates with the severity of asthmatic symptoms. Quantitative trait loci (QTL) linkage analysis of eosinophil count may be a more powerful strategy of mapping genes involved in asthma than linkage analysis using affected relative pairs. 1 Objective: To identify QTLs responsible for variation in eosinophil count in adolescent twins. Methods: We measured eosinophil count longitudinally in 738 pairs of twins at 12, 14, and 16 years of age. We typed 757 highly polymorphic microsatellite markers at an average spacing of similar to5 centimorgans across the genome. We then used multipoint variance components linkage analysis to test for linkage between marker loci and eosinophil concentrations at each age across the genome. Results: We found highly significant linkage on chromosome 2q33 in 12-year-old twins (logarithm of the odds = 4.6; P = .000002) and suggestive evidence of linkage in the same region in 14-year-olds (logarithm of the odds = 1.0; P = .016). We also found suggestive evidence of linkage at other areas of the genome, including regions on chromosomes 2, 3, 4, 8, 9, 11, 12, 17, 20, and 22. Conclusion: A QTL for eosinophil count is present on chromosome 2q33. This QTL might represent a gene involved in asthma pathophysiology.
Resumo:
Fusarium wilt of tomato, caused by the fungal pathogen, Fusarium oxysporum f. sp. lycopersici (Fol), is an economically damaging disease that results in huge losses in Australia and other countries worldwide. The I-3 gene, which confers resistance to Fol race 3, has been described in wild tomato, Lycopersicon pennellii, accessions LA716 and PI414773. We are pursuing the isolation of I-3 from LA716 by map-based cloning. We have constructed a high-resolution map of the I-3 region and have identified markers closely flanking I-3 as well as markers co-segregating with I-3. In addition, construction of a physical map based on these markers has been initiated. This review describes the context of our research and our progress towards isolating the I-3 gene. It also describes some important practical outcomes of our work, including the development and use of a PCR-based marker for marker-assisted selection for I-3, and the finding that the I-3 gene from LA716 is different to that from PI1414773, which we have now designated I-7. Tomato varieties combining I-3 and I-7 have been developed and are currently being introduced into commercial production to further safeguard tomato crops against Fusarium wilt.
Mapping genes for resistance to net form of net blotch and strip rust in barley (Hordeum vulgare L.)
Resumo:
A dihaploid mapping population comprising 65 lines was developed between barley parent varieties Tallon and Kaputar and used to construct a genetic linkage map. This map, comprising 195 amplified fragment length polymorphism and 38 simple sequence repeat markers, was used to identify markers linked to the net form of net blotch (Pyrenophora teres f.sp. teres) and to stripe rust (Puccinia striiformis f.sp. hordei) in barley. The population was screened with five pathotypes of net blotch at the seedling stage in the glasshouse and subjected to a natural inoculation in Hermitage, Queensland. Stripe rust screening was conducted at the adult plant stage in Toluca, Mexico. Analyses of the markers were performed using Mapmanager and Qgene software. One region on chromosome 6H was highly significantly associated with resistance to the net blotch (R2 = 79%). This association was consistent for all pathotypes studied. One region on chromosome 5H was found to be highly significantly associated with resistance to stripe rust (R2= 65%). There are a number of very closely linked markers showing strong associations in these regions, and these markers present an opportunity for marker assisted selection of these traits in barley breeding programs.