5 resultados para chlamidomonas reinhardtii
em University of Queensland eSpace - Australia
Resumo:
Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel Anguilla reinhardtii were examined by light and transmission electron microscopy. Interarterial anastomoses were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to anastomose with a secondary vessel running in parallel with the primary counterpart. In contrast to findings from other species, secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, with a single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these appeared more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it is anticipated that flow through secondary vessels to some extent is affected by the vascular tone of the primary vessel. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. No immunoreactivity was observed on primary or secondary arteries against neuropeptide Y or calcitonin gene-related peptide.
Resumo:
The sanguinicolids Paracardicoloides yamagutii Martin, 1974 and Plethorchis acanthus Martin, 1975 were obtained from their definitive hosts, Anguilla reinhardtii Steindachner and Mugil cephalus Linnaeus (respectively) in the tributaries of the Brisbane River, Queensland, Australia. Two putative sanguinicolid cercariae were collected from a hydrobiid gastropod, Posticobia brazieri Smith, in the same waters. The two cercariae differ markedly in size and the form of their sporocysts. Both putative cercariae develop in the digestive gland of Po. brazieri. The ITS2 rDNA region from these sanguinicolids and a Clinostomum species (utilised as an outgroup due to the close morphological similarities between the cercarial stages of the Clinostomidae and the Sanguinicolidae) were sequenced and aligned. Comparison of the ITS2 sequences showed one cercaria to be that of P. yamagutii. This is the first sanguinicolid life history determined by a molecular method. P. yamagutii is the fourth sanguinicolid known to utilise a freshwater hydrobiid gastropod as its intermediate host. ITS2 rDNA is effective in distinguishing sanguinicolids at the species level.
Resumo:
Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e(-)), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e(-) to drive hydrogen (H-2) production via the chloroplast hydrogenases HydA1 and A2 (H(2)ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H-2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H-2 production in Chlamydomonas, we have developed a new approach to increase H+ and e(-) supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e(-) transfer around photosystem I, eliminating possible competition for e(-) with H(2)ase. Selected strains were further screened for increased H-2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves ( i.e. enhanced substrate availability), and a low dissolved O-2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H-2 production rates of Stm6 were 5 - 13 times that of the control WT strain over a range of conditions ( light intensity, culture time, +/- uncoupler). Typically, similar to 540 ml of H-2 liter(-1) culture ( up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) ( efficiency = similar to 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H-2 production systems.