44 resultados para chaotic advection
em University of Queensland eSpace - Australia
Resumo:
Fluid mixing in steady and unsteady Bow through a channel containing periodic square obstructions has been studied using a finite-difference simulation to determine fluid velocities, followed by the use of passive marker particle advection to look at fluid transport out of the cavities formed between each of the obstructions. The geometry and Bow conditions were chosen from the work by Perkins (1989, M.S. Thesis, Lehigh University; 1992, Ph.D. Thesis, Lehigh University); who investigated heat transfer enhancement due to unsteady flow through such an obstructed channel. Particle advection shows that Bow regimes which are predicted to give good mixing based on snapshots of instantaneous streamline contour plots were not necessarily able to efficiently mix fluid which started in the cavity regions throughout the channel. The use of Poincare sections shows regular regions existing under these conditions which inhibit efficient fluid transport. These regular regions are found to disappear when the unsteady Bow velocity is increased. (C) 1997 Elsevier Science Ltd.
Resumo:
The nonlinear response of a chaotic system to a chaotic variation in a system parameter is investigated experimentally. Clear experimental evidence of frequency entrainment of the chaotic oscillations is observed. We show that analogous to the frequency locking between coupled periodic oscillations, this effect is generic for coupled chaotic systems.
Resumo:
We report on the experimental observation of the generalized synchronization of chaos in a real physical system. We show that under a nonlinear resonant interaction, the chaotic dynamics of a single mode laser can become functionally related to that of a chaotic driving signal and furthermore as the coupling strength is further increased, the chaotic dynamics of the laser approaches that of the driving signal.
Resumo:
In an experimental investigation of the response of a chaotic system to a chaotic driving force, we have observed synchronization of chaos of the response system in the forms of generalized synchronization, phase synchronization, and lag synchronization to the driving signal. In this paper we compare the features of these forms of synchronized chaos and study their relations and physical origins. We found that different forms of chaotic synchronization could be interpreted as different stages of nonlinear interaction between the coupled chaotic systems. (C) 1998 American Institute of Physics.
Resumo:
We describe the classical two-dimensional nonlinear dynamics of cold atoms in far-off-resonant donut beams. We show that chaotic dynamics exists there for charge greater than unity, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in the (x,y) plant for charge 2 are simulated. We show that the atoms will accumulate on several ring regions when the system enters a regime of global chaos. [S1063-651X(99)03903-3].
Resumo:
We report on the experimental observation of both basic frequency locking synchronization and chaos synchronization between two mutually coupled chaotic subsystems. We show that these two kinds of synchronization are two stages of interaction between coupled chaotic systems. in particular the chaos synchronization could be understood as a state of phase locking between coupled chaotic oscillations.
Resumo:
Antiphase dynamics of an optically pumped NH3 bidirectional ring laser under the chaotic, phase-sensitive mode coupling is experimentally observed. Our experimental result suggests strongly that the dynamics is a generic behavior of the laser.
Resumo:
Control of chaotic vibrations in a dual-spin spacecraft with an axial nutational damper is achieved using two techniques. The control methods are implemented on two realistic spacecraft parameter configurations that have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude motion and, consequently, could have disastrous effects on its operation. The two control methods, recursive proportional feedback and continuous delayed feedback, are recently developed techniques for control of chaotic motion in dynamic systems. Each technique is outlined and the effectiveness on this model compared and contrasted. Numerical simulations are performed, and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents, and bifurcation diagrams.
Resumo:
Control of chaotic instability in a rotating multibody system in the form of a dual-spin spacecraft with an axial nutational damper is achieved using an algorithm derived using energy methods. The control method is implemented on two realistic spacecraft parameter configurations which have been found to exhibit chaotic instability when a sinusoidally varying torque is applied to the spacecraft for a range of forcing amplitudes and frequencies. Such a torque, in practice, may arise under malfunction of the control system or from an unbalanced rotor. Chaotic instabilities arising from these torques could introduce uncertainties and irregularities into a spacecraft's attitude and consequently impair pointing accuracy. The control method is formulated from nutational stability results derived using an energy sink approximation for a dual-spin spacecraft with an asymmetric platform and axisymmetric rotor. The effectiveness of the control method is shown numerically and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and Bifurcation diagrams.
Resumo:
Control of chaotic instability in a simplified model of a spinning spacecraft with dissipation is achieved using an algorithm derived using Lyapunov's second method. The control method is implemented on a realistic spacecraft parameter configuration which has been found to exhibit chaotic instability for a range of forcing amplitudes and frequencies when a sinusoidally varying torque is applied to the spacecraft. Such a torque, may arise in practice from an unbalanced rotor or from vibrations in appendages. Numerical simulations are performed and the results are studied by means of time history, phase space, Poincare map, Lyapunov characteristic exponents and bifurcation diagrams. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.
Resumo:
The occurrence of chaotic instabilities is investigated in the swing motion of a dragline bucket during operation cycles. A dragline is a large, powerful, rotating multibody system utilised in the mining industry for removal of overburden. A simplified representative model of the dragline is developed in the form of a fundamental non-linear rotating multibody system with energy dissipation. An analytical predictive criterion for the onset of chaotic instability is then obtained in terms of critical system parameters using Melnikov's method. The model is shown to exhibit chaotic instability due to a harmonic slew torque for a range of amplitudes and frequencies. These chaotic instabilities could introduce irregularities into the motion of the dragline system, rendering the system difficult to control by the operator and/or would have undesirable effects on dragline productivity and fatigue lifetime. The sufficient analytical criterion for the onset of chaotic instability is shown to be a useful predictor of the phenomenon under steady and unsteady slewing conditions via comparisons with numerical results. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.