5 resultados para chalcone-flavone tetramer
em University of Queensland eSpace - Australia
Resumo:
We have determined the crystal structure of the core (C) protein from the Kunjin subtype of West Nile virus (WNV), closely related to the NY99 strain of WNV, currently a major health threat in the U.S. WNV is a member of the Flaviviridae family of enveloped RNA viruses that contains many important human pathogens. The C protein is associated with the RNA genome and forms the internal core which is surrounded by the envelope in the virion. The C protein structure contains four a. helices and forms dimers that are organized into tetramers. The tetramers form extended filamentous ribbons resembling the stacked alpha helices seen in HEAT protein structures.
Resumo:
The frequency and phenotype of human antiviral memory CD8(+) T cells in blood are well studied, yet little is known about their distribution within tissues. Analysis of antiviral CD8(+) T cell populations derived from a unique set of normal liver and blood samples identified a consistent population of virus-specific cells within the liver. In comparison to the circulating T cells, the liver-derived T cells were present at frequencies which were variably enriched compared to that in the blood, and showed significant differences with regard to the expression of CD45RA, CD45RO, CD95, CCR7, CD27 and CD28. The differences in these cell surface markers are consistent with a mature 'effector memory' phenotype of antigen-specific CD8(+) T cells within the liver. An enrichment of an activated subset of NKT cells (Valpha24/Vbeta11) was also observed, a finding which may be relevant to the regulation of the antiviral population:.
Resumo:
Complexation of cadmium(II) by the ditopic (bis-tridentate) thiocarbazone ligand 1,5-bis(6-methyl-2-pyridylmethylene) thiocarbonohydrazide, H2L1, results in the self-assembly of a charge-neutral 2 x 2 molecular grid, [Cd-4(L-1)(4)], comprising four metals and four ligands in an interlocked cyclic array. The solid-state structure of this tetramer has been established by X-ray crystallography and in solution by H-1 NMR spectroscopy. The presence of lower molecular weight oligomers was identified by both NMR and ESI-MS.
Resumo:
The classical paradigm for T cell dynamics suggests that the resolution of a primary acute virus infection is followed by the generation of a long-lived pool of memory T cells that is thought to be highly stable. Very limited alteration in this repertoire is expected until the immune system is re-challenged by reactivation of latent viruses or by cross-reactive pathogens. Contradicting this view, we show here that the T cell repertoire specific for two different latent herpes viruses in the peripheral blood displayed significant contemporaneous co-fluctuations of virus-specific CD8(+) T cells. The coordinated responses to two different viruses suggest that the fluctuations within the T cell repertoire may be driven by sub-clinical viral reactivation or a more generalized 'bystander' effect. The later contention was supported by the observation that, while absolute number of CD3(+) T cells and their subsets and also the cell surface phenotype of antigen-specific T cells remained relatively constant, a loss of CD62L expression in the total CD8(+) T cell population was coincident with the expansion of tetramer-positive virus-specific T cells. This study demonstrates that the dynamic process of T cell expansion and contractions in persistent viral infections is not limited to the acute phase of infection, but also continues during the latent phase of infection.
Resumo:
Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes two steps in the biosynthesis of branched-chain amino acids. Amino acid sequence comparisons across species reveal that there are two types of this enzyme: a short form (Class 1) found in fungi and most bacteria, and a long form (Class 11) typical of plants. Crystal structures of each have been reported previously. However, some bacteria such as Escherichia coli possess a long form, where the amino acid sequence differs appreciably from that found in plants. Here, we report the crystal structure of the E. coli enzyme at 2.6 A resolution, the first three-dimensional structure of any bacterial Class 11 KARI. The enzyme consists of two domains, one with mixed alpha/beta structure, which is similar to that found in other pyridine nucleotide-dependent dehydrogenases. The second domain is mainly alpha-helical and shows strong evidence of internal duplication. Comparison of the active sites between KARI of E. coli, Pseudomonas aeruginosa, and spinach shows that most residues occupy conserved positions in the active site. E. coli KARI was crystallized as a tetramer, the likely biologically active unit. This contrasts with P. aeruginosa KARI, which forms a dodecamer, and spinach KARI, a dimer. In the E. coli KARI tetramer, a novel subunit-to-subunit interacting surface is formed by a symmetrical pair of bulbous protrusions.