4 resultados para cell seeding
em University of Queensland eSpace - Australia
Resumo:
Soft tissue engineering presents significant challenges compared to other tissue engineering disciplines such as bone, cartilage or skin engineering. The very high cell density in most soft tissues, often combined with large implant dimensions, means that the supply of oxygen is a critical factor in the success or failure of a soft tissue scaffold. A model is presented for oxygen diffusion in a 15-60 mm diameter dome-shaped scaffold fed by a blood vessel loop at its base. This model incorporates simple models for vascular growth, cell migration and the effect of cell density on the effective oxygen diffusivity. The model shows that the dynamic, homogeneous cell seeding method often employed in small-scale applications is not applicable in the case of larger scale scaffolds such as these. Instead, we propose the implantation of a small biopsy of tissue close to a blood supply within the scaffold as a technique more likely to be successful. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.
Resumo:
Since the introduction of synthetic vascular grafts in the 1960s, only two-stage endothelial cell seeding has demonstrated any significant improvement over conventional vascular grafts, and its benefits have yet to be demonstrated on a large scale. Tissue engineering is a rapidly expanding field with great potential, but efforts to construct tissue-engineered arterial grafts have, to date, yielded little clinical success. This review explores the latest approaches to the construction of a superior vascular graft, along with its potential for use in the clinic in the future.
Resumo:
A novel, untransformed koala cell line (KC-1) was established by culturing koala conjunctival tissue in growth medium, which has permitted the study of the cell biology of this unique system. After the establishment of the KC-1 cell line, the cells were characterized by light microscopy, doubling time, and Western blot analysis. Light microscopy revealed that the cells have an epithelial morphology. Doubling times were significantly different (P < 0.015) depending on fetal calf serum (FCS) concentration (16.5 h in 10% FCS and 26.5 h in 2% FCS). Cells constricted while in suspension but were shown to attach to the coverslip (or flask) and flatten rapidly, less than 1 h after seeding. To confirm the epithelial nature of the cells, protein was extracted and Western blot analysis was performed. Subsequent probing with primary and secondary antibodies (monoclonal anticytokeratin clone C-11 IgG1 and anti-mouse IgG) revealed two bands at 45 and 52 kDa (compared against a protein molecular weight marker) that correspond to primary type I keratin and major type II keratin, respectively, expressed in simple epithelial cells. The koala cell line was adapted to grow continuously in Dulbecco modified Eagle medium containing 10% FCS for at least 30 passages. This unique cell line is an ideal toot for further investigation on koala cell biology and cytogenetics and for exploration of the pathophysiological mechanism of eye infections caused by different pathogens in koalas.